BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18506221)

  • 1. Prediction of signal peptides in protein sequences by neural networks.
    Plewczynski D; Slabinski L; Ginalski K; Rychlewski L
    Acta Biochim Pol; 2008; 55(2):261-7. PubMed ID: 18506221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PrediSi: prediction of signal peptides and their cleavage positions.
    Hiller K; Grote A; Scheer M; Münch R; Jahn D
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W375-9. PubMed ID: 15215414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal peptide discrimination and cleavage site identification using SVM and NN.
    Kazemian HB; Yusuf SA; White K
    Comput Biol Med; 2014 Feb; 45():98-110. PubMed ID: 24480169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of signal peptides in archaea.
    Bagos PG; Tsirigos KD; Plessas SK; Liakopoulos TD; Hamodrakas SJ
    Protein Eng Des Sel; 2009 Jan; 22(1):27-35. PubMed ID: 18988691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SVMtm: support vector machines to predict transmembrane segments.
    Yuan Z; Mattick JS; Teasdale RD
    J Comput Chem; 2004 Apr; 25(5):632-6. PubMed ID: 14978706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using string kernel to predict signal peptide cleavage site based on subsite coupling model.
    Wang M; Yang J; Chou KC
    Amino Acids; 2005 Jun; 28(4):395-402. PubMed ID: 15838592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of neighboring sequence environment in predicting cleavage sites of signal peptides.
    Li Y; Wen Z; Zhou C; Tan F; Li M
    Peptides; 2008 Sep; 29(9):1498-504. PubMed ID: 18635288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2007 Jun; 357(3):633-40. PubMed ID: 17434148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPdb--a signal peptide database.
    Choo KH; Tan TW; Ranganathan S
    BMC Bioinformatics; 2005 Oct; 6():249. PubMed ID: 16221310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TMBETADISC-RBF: Discrimination of beta-barrel membrane proteins using RBF networks and PSSM profiles.
    Ou YY; Gromiha MM; Chen SA; Suwa M
    Comput Biol Chem; 2008 Jun; 32(3):227-31. PubMed ID: 18434251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide design aided by neural networks: biological activity of artificial signal peptidase I cleavage sites.
    Wrede P; Landt O; Klages S; Fatemi A; Hahn U; Schneider G
    Biochemistry; 1998 Mar; 37(11):3588-93. PubMed ID: 9530285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-based protein domain boundary prediction using BP neural network with various property profiles.
    Ye L; Liu T; Wu Z; Zhou R
    Proteins; 2008 Apr; 71(1):300-7. PubMed ID: 17932915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of C alpha-H...O and C alpha-H...pi interactions in proteins using recurrent neural network.
    Kaur H; Raghava GP
    In Silico Biol; 2006; 6(1-2):111-25. PubMed ID: 16789918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M; Koch O; Klebe G; Schneider G
    Proteins; 2009 Feb; 74(2):344-52. PubMed ID: 18618702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases.
    Yu C; Zavaljevski N; Desai V; Reifman J
    Proteins; 2009 Feb; 74(2):449-60. PubMed ID: 18636476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence.
    Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2010 Feb; 26(3):326-32. PubMed ID: 20019059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes.
    Kandaswamy KK; Pugalenthi G; Hartmann E; Kalies KU; Möller S; Suganthan PN; Martinetz T
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1306-11. PubMed ID: 19995554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture, function and prediction of long signal peptides.
    Hiss JA; Schneider G
    Brief Bioinform; 2009 Sep; 10(5):569-78. PubMed ID: 19535397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.