These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18506226)

  • 1. Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts.
    Connon SJ
    Chem Commun (Camb); 2008 Jun; (22):2499-510. PubMed ID: 18506226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organocatalysis mediated by (thio)urea derivatives.
    Connon SJ
    Chemistry; 2006 Jul; 12(21):5418-27. PubMed ID: 16514689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urea- and thiourea-substituted cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkenes: inversion of configuration at C9 dramatically improves catalyst performance.
    McCooey SH; Connon SJ
    Angew Chem Int Ed Engl; 2005 Oct; 44(39):6367-70. PubMed ID: 16136619
    [No Abstract]   [Full Text] [Related]  

  • 4. Asymmetric 1,4-addition of oxazolones to nitroalkenes by bifunctional cinchona alkaloid thiourea organocatalysts: synthesis of alpha,alpha-disubstituted alpha-amino acids.
    Alemán J; Milelli A; Cabrera S; Reyes E; Jørgensen KA
    Chemistry; 2008; 14(35):10958-66. PubMed ID: 18979472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts.
    Vakulya B; Varga S; Csámpai A; Soós T
    Org Lett; 2005 May; 7(10):1967-9. PubMed ID: 15876031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly enantioselective desymmetrization of meso anhydrides by a bifunctional thiourea-based organocatalyst at low catalyst loadings and room temperature.
    Peschiulli A; Gun'ko Y; Connon SJ
    J Org Chem; 2008 Mar; 73(6):2454-7. PubMed ID: 18275219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric Michael addition mediated by novel cinchona alkaloid-derived bifunctional catalysts containing sulfonamides.
    Luo J; Xu LW; Hay RA; Lu Y
    Org Lett; 2009 Jan; 11(2):437-40. PubMed ID: 19072133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective synthesis of 3,4-dihydropyran-2-ones by domino Michael addition and lactonization with new asymmetric organocatalysts: cinchona-alkaloid-derived chiral quaternary ammonium phenoxides.
    Tozawa T; Nagao H; Yamane Y; Mukaiyama T
    Chem Asian J; 2007 Jan; 2(1):123-34. PubMed ID: 17441145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric chroman synthesis via an intramolecular oxy-Michael addition by bifunctional organocatalysts.
    Miyaji R; Asano K; Matsubara S
    Org Biomol Chem; 2014 Jan; 12(1):119-22. PubMed ID: 24201562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge-to-face CH/pi aromatic interaction and molecular self-recognition in epi-cinchona-based bifunctional thiourea organocatalysis.
    Tárkányi G; Király P; Varga S; Vakulya B; Soós T
    Chemistry; 2008; 14(20):6078-86. PubMed ID: 18504723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epi-cinchona based thiourea organocatalyst family as an efficient asymmetric Michael addition promoter: enantioselective conjugate addition of nitroalkanes to chalcones and alpha,beta-unsaturated N-acylpyrroles.
    Vakulya B; Varga S; Soós T
    J Org Chem; 2008 May; 73(9):3475-80. PubMed ID: 18376862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric catalysis with chiral primary amine-based organocatalysts.
    Xu LW; Luo J; Lu Y
    Chem Commun (Camb); 2009 Apr; (14):1807-21. PubMed ID: 19319412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural optimization of thiourea-based bifunctional organocatalysts for the highly enantioselective dynamic kinetic resolution of azlactones.
    Berkessel A; Mukherjee S; Müller TN; Cleemann F; Roland K; Brandenburg M; Neudörfl JM; Lex J
    Org Biomol Chem; 2006 Dec; 4(23):4319-30. PubMed ID: 17102877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-association-free dimeric cinchona alkaloid organocatalysts: unprecedented catalytic activity, enantioselectivity and catalyst recyclability in dynamic kinetic resolution of racemic azlactones.
    Lee JW; Ryu TH; Oh JS; Bae HY; Jang HB; Song CE
    Chem Commun (Camb); 2009 Dec; (46):7224-6. PubMed ID: 19921037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 9-Thiourea Cinchona alkaloid supported on mesoporous silica as a highly enantioselective, recyclable heterogeneous asymmetric catalyst.
    Yu P; He J; Guo C
    Chem Commun (Camb); 2008 May; (20):2355-7. PubMed ID: 18473068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.
    Li P; Hu X; Dong XQ; Zhang X
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective Friedel-Crafts reaction of indoles with carbonyl compounds catalyzed by bifunctional cinchona alkaloids.
    Li H; Wang YQ; Deng L
    Org Lett; 2006 Aug; 8(18):4063-5. PubMed ID: 16928074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric hydrophosphonylation of alpha-ketoesters catalyzed by cinchona-derived thiourea organocatalysts.
    Wang F; Liu X; Cui X; Xiong Y; Zhou X; Feng X
    Chemistry; 2009; 15(3):589-92. PubMed ID: 19086043
    [No Abstract]   [Full Text] [Related]  

  • 20. Cupreines and cupreidines: an emerging class of bifunctional cinchona organocatalysts.
    Marcelli T; van Maarseveen JH; Hiemstra H
    Angew Chem Int Ed Engl; 2006 Nov; 45(45):7496-504. PubMed ID: 17051626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.