BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18506642)

  • 1. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroinformatics; 2008; 6(2):123-34. PubMed ID: 18506642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroimage; 2008 Jul; 41(4):1242-52. PubMed ID: 18482849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
    Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC
    Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
    Churchill NW; Raamana P; Spring R; Strother SC
    Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines.
    Notter MP; Herholz P; Da Costa S; Gulban OF; Isik AI; Gaglianese A; Murray MM
    Brain Topogr; 2023 Mar; 36(2):172-191. PubMed ID: 36575327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis.
    Strother S; La Conte S; Kai Hansen L; Anderson J; Zhang J; Pulapura S; Rottenberg D
    Neuroimage; 2004; 23 Suppl 1():S196-207. PubMed ID: 15501090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.
    Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC
    Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework.
    Strother SC; Anderson J; Hansen LK; Kjems U; Kustra R; Sidtis J; Frutiger S; Muley S; LaConte S; Rottenberg D
    Neuroimage; 2002 Apr; 15(4):747-71. PubMed ID: 11906218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MACS - a new SPM toolbox for model assessment, comparison and selection.
    Soch J; Allefeld C
    J Neurosci Methods; 2018 Aug; 306():19-31. PubMed ID: 29842901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing reproducibility of fMRI statistical maps using generalized canonical correlation analysis in NPAIRS framework.
    Afshin-Pour B; Hossein-Zadeh GA; Strother SC; Soltanian-Zadeh H
    Neuroimage; 2012 May; 60(4):1970-81. PubMed ID: 22366080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying FSL to the FIAC data: model-based and model-free analysis of voice and sentence repetition priming.
    Beckmann CF; Jenkinson M; Woolrich MW; Behrens TE; Flitney DE; Devlin JT; Smith SM
    Hum Brain Mapp; 2006 May; 27(5):380-91. PubMed ID: 16565953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FuNP (Fusion of Neuroimaging Preprocessing) Pipelines: A Fully Automated Preprocessing Software for Functional Magnetic Resonance Imaging.
    Park BY; Byeon K; Park H
    Front Neuroinform; 2019; 13():5. PubMed ID: 30804773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring predictive and reproducible modeling with the single-subject FIAC dataset.
    Chen X; Pereira F; Lee W; Strother S; Mitchell T
    Hum Brain Mapp; 2006 May; 27(5):452-61. PubMed ID: 16565951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants.
    Baxter L; Fitzgibbon S; Moultrie F; Goksan S; Jenkinson M; Smith S; Andersson J; Duff E; Slater R
    Neuroimage; 2019 Feb; 186():286-300. PubMed ID: 30414984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI.
    Churchill NW; Spring R; Afshin-Pour B; Dong F; Strother SC
    PLoS One; 2015; 10(7):e0131520. PubMed ID: 26161667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Support vector machines for temporal classification of block design fMRI data.
    LaConte S; Strother S; Cherkassky V; Anderson J; Hu X
    Neuroimage; 2005 Jun; 26(2):317-29. PubMed ID: 15907293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Support vector machine learning-based fMRI data group analysis.
    Wang Z; Childress AR; Wang J; Detre JA
    Neuroimage; 2007 Jul; 36(4):1139-51. PubMed ID: 17524674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolating the sources of pipeline-variability in group-level task-fMRI results.
    Bowring A; Nichols TE; Maumet C
    Hum Brain Mapp; 2022 Feb; 43(3):1112-1128. PubMed ID: 34773436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RUMBA software: tools for neuroimaging data analysis.
    Bly BM; Rebbechi D; Hanson SJ; Grasso G
    Neuroinformatics; 2004; 2(1):71-100. PubMed ID: 15067169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity.
    Churchill NW; Yourganov G; Oder A; Tam F; Graham SJ; Strother SC
    PLoS One; 2012; 7(2):e31147. PubMed ID: 22383999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.