These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18506711)

  • 1. A novel SNaPshot assay to detect the mdx mutation.
    Budowle SA; Gonzalez S; Budowle B; Eisenberg AJ; Grange RW
    Muscle Nerve; 2008 Jun; 37(6):731-5. PubMed ID: 18506711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snapback SSCP analysis: engineered conformation changes for the rapid typing of known mutations.
    Wilton SD; Honeyman K; Fletcher S; Laing NG
    Hum Mutat; 1998; 11(3):252-8. PubMed ID: 9521428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel and simple method for genotyping the mdx mouse using high-resolution melt polymerase chain reaction.
    Trebbin AL; Hoey AJ
    Muscle Nerve; 2009 May; 39(5):603-8. PubMed ID: 19347923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle genome-wide expression profiling during disease evolution in mdx mice.
    Marotta M; Ruiz-Roig C; Sarria Y; Peiro JL; Nuñez F; Ceron J; Munell F; Roig-Quilis M
    Physiol Genomics; 2009 Apr; 37(2):119-32. PubMed ID: 19223608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mdx-amplification-resistant mutation system assay, a simple and rapid polymerase chain reaction-based detection of the mdx allele.
    Amalfitano A; Chamberlain JS
    Muscle Nerve; 1996 Dec; 19(12):1549-53. PubMed ID: 8941268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput single nucleotide polymorphism typing by fluorescent single-strand conformation polymorphism analysis with capillary electrophoresis.
    Doi K; Doi H; Noiri E; Nakao A; Fujita T; Tokunaga K
    Electrophoresis; 2004 Mar; 25(6):833-8. PubMed ID: 15004843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex high-throughput solid-phase minisequencing by capillary electrophoresis and liquid core waveguide fluorescence detection.
    Curcio M; Stålhandske P; Lindberg P; Roeraade J
    Electrophoresis; 2002 May; 23(10):1467-72. PubMed ID: 12116157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation and single nucleotide polymorphism detection using temperature gradient capillary electrophoresis.
    Murphy KM; Berg KD
    Expert Rev Mol Diagn; 2003 Nov; 3(6):811-8. PubMed ID: 14628908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid diagnosis of Wilson disease by a 28-mutation panel: real-time amplification refractory mutation system in diagnosing acute Wilsonian liver failure.
    Mak CM; Lam CW; Lai ST; Hui Y; Tam S
    Clin Chim Acta; 2008 Dec; 398(1-2):39-42. PubMed ID: 18760268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of SNP allele frequencies by SSCP analysis of pooled DNA.
    Tahira T; Kukita Y; Higasa K; Okazaki Y; Yoshinaga A; Hayashi K
    Methods Mol Biol; 2009; 578():193-207. PubMed ID: 19768595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel human pathological mutations. Gene symbol: DMD. Disease: muscular dystrophy, Duchenne.
    Garcia-Planells J; Torres-Puente M; Vilchez JJ; Pérez-Alonso M
    Hum Genet; 2009 Aug; 126(2):338. PubMed ID: 19694016
    [No Abstract]   [Full Text] [Related]  

  • 12. Novel human pathological mutations. Gene symbol: DMD. Disease: muscular dystrophy, Duchenne.
    Garcia-Planells J; Torres-Puente M; Vilchez JJ; Perez-Alonso M
    Hum Genet; 2009 Aug; 126(2):338. PubMed ID: 19694014
    [No Abstract]   [Full Text] [Related]  

  • 13. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray.
    Yin D; Ogawa S; Kawamata N; Tunici P; Finocchiaro G; Eoli M; Ruckert C; Huynh T; Liu G; Kato M; Sanada M; Jauch A; Dugas M; Black KL; Koeffler HP
    Mol Cancer Res; 2009 May; 7(5):665-77. PubMed ID: 19435819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology.
    Mitani Y; Lezhava A; Kawai Y; Kikuchi T; Oguchi-Katayama A; Kogo Y; Itoh M; Miyagi T; Takakura H; Hoshi K; Kato C; Arakawa T; Shibata K; Fukui K; Masui R; Kuramitsu S; Kiyotani K; Chalk A; Tsunekawa K; Murakami M; Kamataki T; Oka T; Shimada H; Cizdziel PE; Hayashizaki Y
    Nat Methods; 2007 Mar; 4(3):257-62. PubMed ID: 17322893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous and one-step fluorescent allele-specific PCR for SNP genotyping assays using conjugated polyelectrolytes.
    Duan X; Liu L; Wang S
    Biosens Bioelectron; 2009 Mar; 24(7):2095-9. PubMed ID: 19070477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrayed primer extension reaction for genotyping on oligonucleotide microarray.
    Pullat J; Metspalu A
    Methods Mol Biol; 2008; 444():161-7. PubMed ID: 18425479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of trans-splicing adeno-associated viral vectors for Duchenne muscular dystrophy gene therapy.
    Lai Y; Li D; Yue Y; Duan D
    Methods Mol Biol; 2008; 433():259-75. PubMed ID: 18679629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant DNA polymerase for improved detection of single-nucleotide variations in microarrayed primer extension.
    Kranaster R; Ketzer P; Marx A
    Chembiochem; 2008 Mar; 9(5):694-7. PubMed ID: 18247447
    [No Abstract]   [Full Text] [Related]  

  • 19. Primer-site SNPs mask mutations.
    Quinlan AR; Marth GT
    Nat Methods; 2007 Mar; 4(3):192. PubMed ID: 17327845
    [No Abstract]   [Full Text] [Related]  

  • 20. Homogeneous and label-free fluorescence detection of single-nucleotide polymorphism using target-primed branched rolling circle amplification.
    Cheng Y; Li Z; Zhang X; Du B; Fan Y
    Anal Biochem; 2008 Jul; 378(2):123-6. PubMed ID: 18420020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.