These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 18506794)
1. Adapting the clinical MRI software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions. Chanu A; Felfoul O; Beaudoin G; Martel S Magn Reson Med; 2008 Jun; 59(6):1287-97. PubMed ID: 18506794 [TBL] [Abstract][Full Text] [Related]
2. Real-time software platform design for in-vivo navigation of a small ferromagnetic device in a swine carotid artery using a magnetic resonance imaging system. Chanu A; Martel S Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6585-8. PubMed ID: 18003534 [TBL] [Abstract][Full Text] [Related]
3. A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M Comput Aided Surg; 2008 Nov; 13(6):340-52. PubMed ID: 19031286 [TBL] [Abstract][Full Text] [Related]
4. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. Tamaz S; Gourdeau R; Chanu A; Mathieu JB; Martel S IEEE Trans Biomed Eng; 2008 Jul; 55(7):1854-63. PubMed ID: 18595804 [TBL] [Abstract][Full Text] [Related]
5. Medical and technical protocol for automatic navigation of a wireless device in the carotid artery of a living swine using a standard clinical MRI system. Martel S; Mathieu JB; Felfoul O; Chanu A; Aboussouan E; Tamaz S; Pouponneau P; Yahia L; Beaudoin G; Soulez G; Mankiewicz M Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):144-52. PubMed ID: 18051242 [TBL] [Abstract][Full Text] [Related]
6. Sequence design and software environment for real-time navigation of a wireless ferromagnetic device using MRI system and single echo 3D tracking. Chanu A; Aboussouan E; Tamaz S; Martel S Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1746-9. PubMed ID: 17946065 [TBL] [Abstract][Full Text] [Related]
7. Pulse sequences and system interfaces for interventional and real-time MRI. Yutzy SR; Duerk JL J Magn Reson Imaging; 2008 Feb; 27(2):267-75. PubMed ID: 18219681 [TBL] [Abstract][Full Text] [Related]
8. Tracking of an interventional catheter with a ferromagnetic tip using dual-echo projections. Zhang K; Maier F; Krafft AJ; Umathum R; Semmler W; Bock M J Magn Reson; 2013 Sep; 234():176-83. PubMed ID: 23892103 [TBL] [Abstract][Full Text] [Related]
9. Navigation concepts for MR image-guided interventions. Moche M; Trampel R; Kahn T; Busse H J Magn Reson Imaging; 2008 Feb; 27(2):276-91. PubMed ID: 18219682 [TBL] [Abstract][Full Text] [Related]
10. MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules. Belharet K; Folio D; Ferreira A Minim Invasive Ther Allied Technol; 2010 Jun; 19(3):157-69. PubMed ID: 20497068 [TBL] [Abstract][Full Text] [Related]
11. Initial in vivo studies with a polymer-based MR-compatible guide wire. Mekle R; Zenge MO; Ladd ME; Quick HH; Hofmann E; Scheffler K; Bilecen D J Vasc Interv Radiol; 2009 Oct; 20(10):1384-9. PubMed ID: 19699660 [TBL] [Abstract][Full Text] [Related]
12. In vivo MR-tracking based on magnetic signature selective excitation. Felfoul O; Mathieu JB; Beaudoin G; Martel S IEEE Trans Med Imaging; 2008 Jan; 27(1):28-35. PubMed ID: 18270059 [TBL] [Abstract][Full Text] [Related]
13. Reverse polarized inductive coupling to transmit and receive radiofrequency coil arrays. Celik H; Atalar E Magn Reson Med; 2012 Feb; 67(2):446-56. PubMed ID: 21656566 [TBL] [Abstract][Full Text] [Related]
14. GantryMate: A Modular MR-Compatible Assistance System for MR-Guided Needle Interventions. Reichert A; Bock M; Vogele M; Joachim Krafft A Tomography; 2019 Jun; 5(2):266-273. PubMed ID: 31245548 [TBL] [Abstract][Full Text] [Related]
15. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery. Tomikawa M; Hong J; Shiotani S; Tokunaga E; Konishi K; Ieiri S; Tanoue K; Akahoshi T; Maehara Y; Hashizume M J Am Coll Surg; 2010 Jun; 210(6):927-33. PubMed ID: 20510801 [TBL] [Abstract][Full Text] [Related]
16. Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires. Condino S; Ferrari V; Freschi C; Alberti A; Berchiolli R; Mosca F; Ferrari M Int J Med Robot; 2012 Sep; 8(3):300-10. PubMed ID: 22368145 [TBL] [Abstract][Full Text] [Related]
17. Tracking planar orientations of active MRI needles. Sathyanarayana S; Aksit P; Arepally A; Karmarkar PV; Solaiyappan M; Atalar E J Magn Reson Imaging; 2007 Aug; 26(2):386-91. PubMed ID: 17610285 [TBL] [Abstract][Full Text] [Related]
18. Projector-based augmented reality system for interventional visualization inside MRI scanners. Mewes A; Heinrich F; Kägebein U; Hensen B; Wacker F; Hansen C Int J Med Robot; 2019 Feb; 15(1):e1950. PubMed ID: 30168639 [TBL] [Abstract][Full Text] [Related]
19. Automatic slice positioning (ASP) for passive real-time tracking of interventional devices using projection-reconstruction imaging with echo-dephasing (PRIDE). Patil S; Bieri O; Jhooti P; Scheffler K Magn Reson Med; 2009 Oct; 62(4):935-42. PubMed ID: 19585605 [TBL] [Abstract][Full Text] [Related]
20. Multi-selective catheter for MR-guided endovascular interventions. Clogenson HC; van Lith JY; Dankelman J; Melzer A; van den Dobbelsteen JJ Med Eng Phys; 2015 Jul; 37(7):623-30. PubMed ID: 25937614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]