These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 18506857)

  • 1. Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes.
    Georgi C; Hartmann N; Gokus T; Green AA; Hersam MC; Hartschuh A
    Chemphyschem; 2008 Jul; 9(10):1460-4. PubMed ID: 18506857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes.
    Duque JG; Pasquali M; Cognet L; Lounis B
    ACS Nano; 2009 Aug; 3(8):2153-6. PubMed ID: 19594113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.
    Cognet L; Tsyboulski DA; Rocha JD; Doyle CD; Tour JM; Weisman RB
    Science; 2007 Jun; 316(5830):1465-8. PubMed ID: 17556581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional molecules from single wall carbon nanotubes. Photoinduced solubility of short single wall carbon nanotube residues by covalent anchoring of 2,4,6-triarylpyrylium units.
    Alvaro M; Aprile C; Ferrer B; Garcia H
    J Am Chem Soc; 2007 May; 129(17):5647-55. PubMed ID: 17411044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and redox behavior of flavin mononucleotide-functionalized single-walled carbon nanotubes.
    Ju SY; Papadimitrakopoulos F
    J Am Chem Soc; 2008 Jan; 130(2):655-64. PubMed ID: 18081284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the laser dye Styryl-13 as a reference near-infrared fluorophore: implications for the photoluminescence quantum yields of semiconducting single-walled carbon nanotubes.
    Stürzl N; Lebedkin S; Kappes MM
    J Phys Chem A; 2009 Sep; 113(38):10238-40. PubMed ID: 19757846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast exciton energy transfer between nanoscale coaxial cylinders: intertube transfer and luminescence quenching in double-walled carbon nanotubes.
    Koyama T; Asada Y; Hikosaka N; Miyata Y; Shinohara H; Nakamura A
    ACS Nano; 2011 Jul; 5(7):5881-7. PubMed ID: 21682277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes.
    Hertel T; Himmelein S; Ackermann T; Stich D; Crochet J
    ACS Nano; 2010 Dec; 4(12):7161-8. PubMed ID: 21105744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes.
    Dukovic G; White BE; Zhou Z; Wang F; Jockusch S; Steigerwald ML; Heinz TF; Friesner RA; Turro NJ; Brus LE
    J Am Chem Soc; 2004 Nov; 126(46):15269-76. PubMed ID: 15548024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments.
    Duque JG; Cognet L; Parra-Vasquez AN; Nicholas N; Schmidt HK; Pasquali M
    J Am Chem Soc; 2008 Feb; 130(8):2626-33. PubMed ID: 18237169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered DNA wrapping switches on luminescence in single-walled nanotube dispersions.
    Cathcart H; Nicolosi V; Hughes JM; Blau WJ; Kelly JM; Quinn SJ; Coleman JN
    J Am Chem Soc; 2008 Sep; 130(38):12734-44. PubMed ID: 18761456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoinduced band gap shift and deep levels in luminescent carbon nanotubes.
    Finnie P; Lefebvre J
    ACS Nano; 2012 Feb; 6(2):1702-14. PubMed ID: 22308958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient quenching of photoluminescence from functionalized single-walled carbon nanotubes by nitroaromatic molecules.
    Kose ME; Harruff BA; Lin Y; Veca LM; Lu F; Sun YP
    J Phys Chem B; 2006 Jul; 110(29):14032-4. PubMed ID: 16854095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solubilization and photoinduced electron transfer of single-walled carbon nanotubes wrapped with coenzyme Q(10).
    Ohtani M; Fukuzumi S
    Chem Commun (Camb); 2009 Sep; (33):4997-9. PubMed ID: 19668828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles.
    Kato T; Hatakeyama R
    J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local photo-oxidation of individual single walled carbon nanotubes probed by femtosecond four wave mixing imaging.
    Aumanen J; Johansson A; Herranen O; Myllyperkiö P; Pettersson M
    Phys Chem Chem Phys; 2015 Jan; 17(1):209-16. PubMed ID: 25381806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of single walled carbon nanotubes onto silicon oxide surface gradients of 3-aminopropyltri(ethoxysilane) described by polymer adsorption theory.
    Usrey ML; Strano MS
    Langmuir; 2009 Sep; 25(17):9922-30. PubMed ID: 19705888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes.
    Ma X; Roslyak O; Wang F; Duque JG; Piryatinski A; Doorn SK; Htoon H
    ACS Nano; 2014 Oct; 8(10):10613-20. PubMed ID: 25251324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton diffusion in air-suspended single-walled carbon nanotubes.
    Moritsubo S; Murai T; Shimada T; Murakami Y; Chiashi S; Maruyama S; Kato YK
    Phys Rev Lett; 2010 Jun; 104(24):247402. PubMed ID: 20867335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endohedral condensation and higher exohedral coverage of Kr on open single-walled carbon nanotubes at 77 K.
    Jakubek ZJ; Simard B
    Langmuir; 2005 Nov; 21(23):10730-4. PubMed ID: 16262344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.