These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18507336)

  • 1. [Progress in the study of pH and temperature sensitive biodegradable block copolymers].
    Hao TN; Qiao MX; Li Z; Chen DW
    Yao Xue Xue Bao; 2008 Feb; 43(2):123-7. PubMed ID: 18507336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Preparation and degradation behavior of PELGE nanoparticles].
    Duan Y; Zhang Z; Tang Y; Lin Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):921-5. PubMed ID: 15646333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of doxycycline-eluting delivery systems based on SynBiosys biodegradable multi-block copolymers.
    Gillissen M; Steendam R; van der Laan A; Tijsma E
    J Control Release; 2006 Nov; 116(2):e90-2. PubMed ID: 17718990
    [No Abstract]   [Full Text] [Related]  

  • 4. Applications of biodegradable lactides and glycolides in podiatry.
    Athanasiou KA; Niederauer GG; Agrawal CM; Landsman AS
    Clin Podiatr Med Surg; 1995 Jul; 12(3):475-95. PubMed ID: 7553536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, biodegradability and biocompatibility of a temperature-sensitive PBLA-PEG-PBLA hydrogel as protein delivery system with low critical gelation concentration.
    Xu Y; Shen Y; Xiong Y; Li C; Sun C; Ouahab A; Tu J
    Drug Dev Ind Pharm; 2014 Sep; 40(9):1264-75. PubMed ID: 23855735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Current status and perspective of research on PEG-PLGA].
    Zhou HN; Li YM; Liu T
    Zhonghua Zhong Liu Za Zhi; 2010 Aug; 32(8):561-3. PubMed ID: 21122404
    [No Abstract]   [Full Text] [Related]  

  • 7. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery.
    Singh NK; Lee DS
    J Control Release; 2014 Nov; 193():214-27. PubMed ID: 24815421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermosensitive and biodegradable polymeric micelles with transient stability.
    Soga O; van Nostrum CF; Hennink WE
    J Control Release; 2005 Jan; 101(1-3):383-5. PubMed ID: 15822229
    [No Abstract]   [Full Text] [Related]  

  • 9. Biodegradable polymers for ocular drug delivery.
    Kimura H; Ogura Y
    Ophthalmologica; 2001; 215(3):143-55. PubMed ID: 11340382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Environmental stimuli-sensitive biodegradable drug delivery systems].
    Zhang J; Chu L; Wang H; Ju X; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1275-8. PubMed ID: 16422119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling degradation of acid-hydrolyzable pluronic hydrogels by physical entrapment of poly(lactic acid-co-glycolic acid) microspheres.
    Lee JB; Chun KW; Yoon JJ; Park TG
    Macromol Biosci; 2004 Oct; 4(10):957-62. PubMed ID: 15487026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PEG-PLA block copolymer as potential drug carrier: preparation and characterization.
    Ben-Shabat S; Kumar N; Domb AJ
    Macromol Biosci; 2006 Dec; 6(12):1019-25. PubMed ID: 17128420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers.
    Li J; Rothstein SN; Little SR; Edenborn HM; Meyer TY
    J Am Chem Soc; 2012 Oct; 134(39):16352-9. PubMed ID: 22950719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Investigation of biodegradable materials as polymeric gene carriers].
    Yang Y; Jia W; Qi X; Zeng W; Yang F; Xie Y; Yang W; Zhang Z; Zhou S; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):573-7. PubMed ID: 16856392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications.
    van Dijkhuizen-Radersma R; Roosma JR; Kaim P; Métairie S; Péters FL; de Wijn J; Zijlstra PG; de Groot K; Bezemer JM
    J Biomed Mater Res A; 2003 Dec; 67(4):1294-304. PubMed ID: 14624516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermoresponsive block copolymers of poly(ethylene glycol) and polyphosphoester: thermo-induced self-assembly, biocompatibility, and hydrolytic degradation.
    Wang YC; Tang LY; Li Y; Wang J
    Biomacromolecules; 2009 Jan; 10(1):66-73. PubMed ID: 19133835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.
    Hutmacher D; Hürzeler MB; Schliephake H
    Int J Oral Maxillofac Implants; 1996; 11(5):667-78. PubMed ID: 8908867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polylactic acid (PLA): research, development and industrialization.
    Pang X; Zhuang X; Tang Z; Chen X
    Biotechnol J; 2010 Nov; 5(11):1125-36. PubMed ID: 21058315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Boc-histidine-capped PLGA-PEG-PLGA as a smart polymer for drug delivery sensitive to tumor extracellular pH.
    Chang G; Li C; Lu W; Ding J
    Macromol Biosci; 2010 Oct; 10(10):1248-56. PubMed ID: 20593367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.