These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 18507384)
1. Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies. Chen J; Liu ZP J Am Chem Soc; 2008 Jun; 130(25):7929-37. PubMed ID: 18507384 [TBL] [Abstract][Full Text] [Related]
2. The role of electrophilic species in the Fischer-Tropsch reaction. Maitlis PM; Zanotti V Chem Commun (Camb); 2009 Apr; (13):1619-34. PubMed ID: 19294244 [TBL] [Abstract][Full Text] [Related]
3. The optimally performing Fischer-Tropsch catalyst. Filot IA; van Santen RA; Hensen EJ Angew Chem Int Ed Engl; 2014 Nov; 53(47):12746-50. PubMed ID: 25168456 [TBL] [Abstract][Full Text] [Related]
4. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer-Tropsch catalysts from surface science to industrial application. Oosterbeek H Phys Chem Chem Phys; 2007 Jul; 9(27):3570-6. PubMed ID: 17612722 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of ethanol synthesis from syngas on Rh(111). Choi Y; Liu P J Am Chem Soc; 2009 Sep; 131(36):13054-61. PubMed ID: 19702298 [TBL] [Abstract][Full Text] [Related]
6. Insight into CH(4) formation in iron-catalyzed Fischer-Tropsch synthesis. Huo CF; Li YW; Wang J; Jiao H J Am Chem Soc; 2009 Oct; 131(41):14713-21. PubMed ID: 19780531 [TBL] [Abstract][Full Text] [Related]
7. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. He J; Liu Z; Yoneyama Y; Nishiyama N; Tsubaki N Chemistry; 2006 Nov; 12(32):8296-304. PubMed ID: 16850512 [TBL] [Abstract][Full Text] [Related]
8. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review. Abelló S; Montané D ChemSusChem; 2011 Nov; 4(11):1538-56. PubMed ID: 22083868 [TBL] [Abstract][Full Text] [Related]
9. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. den Breejen JP; Radstake PB; Bezemer GL; Bitter JH; Frøseth V; Holmen A; de Jong KP J Am Chem Soc; 2009 May; 131(20):7197-203. PubMed ID: 19402702 [TBL] [Abstract][Full Text] [Related]
10. Ru(II) catalysts supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins: reaction scope, mechanistic studies, and guides for the development of improved catalysts. Foley NA; Lee JP; Ke Z; Gunnoe TB; Cundari TR Acc Chem Res; 2009 May; 42(5):585-97. PubMed ID: 19296659 [TBL] [Abstract][Full Text] [Related]
11. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. Bezemer GL; Bitter JH; Kuipers HP; Oosterbeek H; Holewijn JE; Xu X; Kapteijn F; van Dillen AJ; de Jong KP J Am Chem Soc; 2006 Mar; 128(12):3956-64. PubMed ID: 16551103 [TBL] [Abstract][Full Text] [Related]
12. Site regeneration in the Fischer-Tropsch synthesis reaction: a synchronized CO dissociation and C-C coupling pathway. Shetty SG; Ciobîcă IM; Hensen EJ; van Santen RA Chem Commun (Camb); 2011 Sep; 47(35):9822-4. PubMed ID: 21818499 [TBL] [Abstract][Full Text] [Related]
13. Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Li F; Jiang DE; Zeng XC; Chen Z Nanoscale; 2012 Feb; 4(4):1123-9. PubMed ID: 22071543 [TBL] [Abstract][Full Text] [Related]
14. A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer-Tropsch Synthesis over Transition Metals. Jamaati M; Torkashvand M; Sarabadani Tafreshi S; de Leeuw NH Molecules; 2023 Sep; 28(18):. PubMed ID: 37764301 [TBL] [Abstract][Full Text] [Related]
15. A DFT study of the adsorption and dissociation of CO on sulfur-precovered Fe100. Curulla-Ferré D; Govender A; Bromfield TC; Niemantsverdriet JW J Phys Chem B; 2006 Jul; 110(28):13897-904. PubMed ID: 16836339 [TBL] [Abstract][Full Text] [Related]
16. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming. Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335 [TBL] [Abstract][Full Text] [Related]
17. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C). de Smit E; Cinquini F; Beale AM; Safonova OV; van Beek W; Sautet P; Weckhuysen BM J Am Chem Soc; 2010 Oct; 132(42):14928-41. PubMed ID: 20925335 [TBL] [Abstract][Full Text] [Related]
18. In-silico investigations in heterogeneous catalysis--combustion and synthesis of small alkanes. Inderwildi OR; Jenkins SJ Chem Soc Rev; 2008 Oct; 37(10):2274-309. PubMed ID: 18818828 [TBL] [Abstract][Full Text] [Related]
19. Fischer-Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth. Mendes FM; Perez CA; Noronha FB; Souza CD; Cesar DV; Freund HJ; Schmal M J Phys Chem B; 2006 May; 110(18):9155-63. PubMed ID: 16671728 [TBL] [Abstract][Full Text] [Related]
20. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Chen W; Fan Z; Pan X; Bao X J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]