These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 18507384)
21. In situ reduction study of cobalt model Fischer-Tropsch synthesis catalysts. du Plessis HE; Forbes RP; Barnard W; Erasmus WJ; Steuwer A Phys Chem Chem Phys; 2013 Jul; 15(28):11640-5. PubMed ID: 23752408 [TBL] [Abstract][Full Text] [Related]
22. Mechanistic role of water on the rate and selectivity of Fischer-Tropsch synthesis on ruthenium catalysts. Hibbitts DD; Loveless BT; Neurock M; Iglesia E Angew Chem Int Ed Engl; 2013 Nov; 52(47):12273-8. PubMed ID: 24123803 [TBL] [Abstract][Full Text] [Related]
23. Unraveling the Fischer-Tropsch mechanism: a combined DFT and microkinetic investigation of C-C bond formation on Ru. Mirwald JW; Inderwildi OR Phys Chem Chem Phys; 2012 May; 14(19):7028-31. PubMed ID: 22482113 [TBL] [Abstract][Full Text] [Related]
24. Mechanism and microkinetics of the Fischer-Tropsch reaction. van Santen RA; Markvoort AJ; Filot IA; Ghouri MM; Hensen EJ Phys Chem Chem Phys; 2013 Oct; 15(40):17038-63. PubMed ID: 24030478 [TBL] [Abstract][Full Text] [Related]
25. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. Zhang Q; Cheng K; Kang J; Deng W; Wang Y ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240 [TBL] [Abstract][Full Text] [Related]
26. Origin of Oxide sensitivity in gold-based catalysts: a first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2. Wang CM; Fan KN; Liu ZP J Am Chem Soc; 2007 Mar; 129(9):2642-7. PubMed ID: 17290994 [TBL] [Abstract][Full Text] [Related]
27. Kinetic modeling of methyl butanoate in shock tube. Huynh LK; Lin KC; Violi A J Phys Chem A; 2008 Dec; 112(51):13470-80. PubMed ID: 19035670 [TBL] [Abstract][Full Text] [Related]
28. Microkinetics of oxygenate formation in the Fischer-Tropsch reaction. van Santen RA; Ghouri M; Hensen EM Phys Chem Chem Phys; 2014 Jun; 16(21):10041-58. PubMed ID: 24509610 [TBL] [Abstract][Full Text] [Related]
29. cis-Beta-bis(carbonyl) ruthenium-salen complexes: X-ray crystal structures and remarkable catalytic properties toward asymmetric intramolecular alkene cyclopropanation. Xu ZJ; Fang R; Zhao C; Huang JS; Li GY; Zhu N; Che CM J Am Chem Soc; 2009 Apr; 131(12):4405-17. PubMed ID: 19275149 [TBL] [Abstract][Full Text] [Related]
30. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour. de Smit E; Weckhuysen BM Chem Soc Rev; 2008 Dec; 37(12):2758-81. PubMed ID: 19020686 [TBL] [Abstract][Full Text] [Related]
31. Catalyst nano-particle size dependence of the Fischer-Tropsch reaction. van Santen RA; Markvoor AJ Faraday Discuss; 2013; 162():267-79. PubMed ID: 24015588 [TBL] [Abstract][Full Text] [Related]
32. Correlating Fischer-Tropsch activity to Ru nanoparticle surface structure as probed by high-energy X-ray diffraction. Quek XY; Filot IA; Pestman R; van Santen RA; Petkov V; Hensen EJ Chem Commun (Camb); 2014 Jun; 50(45):6005-8. PubMed ID: 24763733 [TBL] [Abstract][Full Text] [Related]
33. Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: Sonochemical synthesis and bench-scale experimental tests. Comazzi A; Pirola C; Longhi M; Bianchi CL; Suslick KS Ultrason Sonochem; 2017 Jan; 34():774-780. PubMed ID: 27773304 [TBL] [Abstract][Full Text] [Related]
34. A new insight into Fischer-Tropsch synthesis. Liu ZP; Hu P J Am Chem Soc; 2002 Oct; 124(39):11568-9. PubMed ID: 12296701 [TBL] [Abstract][Full Text] [Related]
35. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles. Cheng K; Zhang L; Kang J; Peng X; Zhang Q; Wang Y Chemistry; 2015 Jan; 21(5):1928-37. PubMed ID: 25424473 [TBL] [Abstract][Full Text] [Related]
36. Hydrogen induced CO activation on open Ru and Co surfaces. Shetty S; van Santen RA Phys Chem Chem Phys; 2010 Jun; 12(24):6330-2. PubMed ID: 20532417 [TBL] [Abstract][Full Text] [Related]
37. A review of dry (CO2) reforming of methane over noble metal catalysts. Pakhare D; Spivey J Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089 [TBL] [Abstract][Full Text] [Related]
38. A new insight into the initial step in the Fischer-Tropsch synthesis: CO dissociation on Ru surfaces. Li H; Fu G; Xu X Phys Chem Chem Phys; 2012 Dec; 14(48):16686-94. PubMed ID: 23131901 [TBL] [Abstract][Full Text] [Related]
39. Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis. Zhu Y; Ye Y; Zhang S; Leong ME; Tao FF Langmuir; 2012 May; 28(21):8275-80. PubMed ID: 22583353 [TBL] [Abstract][Full Text] [Related]
40. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Kang J; Zhang S; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2009; 48(14):2565-8. PubMed ID: 19248073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]