These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 1850746)
1. Differential additions to the myoglobin prosthetic heme group. Oxidative gamma-meso substitution by alkylhydrazines. Choe YS; Ortiz de Montellano PR J Biol Chem; 1991 May; 266(13):8523-30. PubMed ID: 1850746 [TBL] [Abstract][Full Text] [Related]
2. Solution NMR determination of the seating(s) of meso-nitro-etioheme-1 in myoglobin: implications for steric constraints to meso position access in heme degradation by coupled oxidation. Wang J; Li Y; Ma D; Kalish H; Balch AL; La Mar GN J Am Chem Soc; 2001 Aug; 123(33):8080-8. PubMed ID: 11506564 [TBL] [Abstract][Full Text] [Related]
3. Stabilized isoporphyrin intermediates in the inactivation of horseradish peroxidase by alkylhydrazines. Ator MA; David SK; Ortiz de Montellano PR J Biol Chem; 1989 Jun; 264(16):9250-7. PubMed ID: 2722829 [TBL] [Abstract][Full Text] [Related]
4. Radical energies and the regiochemistry of addition to heme groups. Methylperoxy and nitrite radical additions to the heme of horseradish peroxidase. Wojciechowski G; de Montellano PR J Am Chem Soc; 2007 Feb; 129(6):1663-72. PubMed ID: 17249668 [TBL] [Abstract][Full Text] [Related]
5. Structure and catalytic mechanism of horseradish peroxidase. Regiospecific meso alkylation of the prosthetic heme group by alkylhydrazines. Ator MA; David SK; Ortiz de Montellano PR J Biol Chem; 1987 Nov; 262(31):14954-60. PubMed ID: 3667617 [TBL] [Abstract][Full Text] [Related]
6. Reactions of the protein radical in peroxide-treated myoglobin. Formation of a heme-protein cross-link. Catalano CE; Choe YS; Ortiz de Montellano PR J Biol Chem; 1989 Jun; 264(18):10534-41. PubMed ID: 2732236 [TBL] [Abstract][Full Text] [Related]
7. The catalytic site of manganese peroxidase. Regiospecific addition of sodium azide and alkylhydrazines to the heme group. Harris RZ; Wariishi H; Gold MH; Ortiz de Montellano PR J Biol Chem; 1991 May; 266(14):8751-8. PubMed ID: 1851156 [TBL] [Abstract][Full Text] [Related]
8. Immuno-spin trapping of hemoglobin and myoglobin radicals derived from nitrite-mediated oxidation. Keszler A; Mason RP; Hogg N Free Radic Biol Med; 2006 Feb; 40(3):507-15. PubMed ID: 16443166 [TBL] [Abstract][Full Text] [Related]
9. Scavenging with TEMPO* to identify peptide- and protein-based radicals by mass spectrometry: advantages of spin scavenging over spin trapping. Wright PJ; English AM J Am Chem Soc; 2003 Jul; 125(28):8655-65. PubMed ID: 12848573 [TBL] [Abstract][Full Text] [Related]
10. The reaction of ascorbic acid with different heme iron redox states of myoglobin. Antioxidant and prooxidant aspects. Giulivi C; Cadenas E FEBS Lett; 1993 Oct; 332(3):287-90. PubMed ID: 8405472 [TBL] [Abstract][Full Text] [Related]
11. The reactivity of thiols and disulfides with different redox states of myoglobin. Redox and addition reactions and formation of thiyl radical intermediates. Romero FJ; OrdoƱez I; Arduini A; Cadenas E J Biol Chem; 1992 Jan; 267(3):1680-8. PubMed ID: 1309791 [TBL] [Abstract][Full Text] [Related]
12. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes. Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661 [TBL] [Abstract][Full Text] [Related]
13. Contribution of heme-propionate side chains to structure and function of myoglobin: chemical approach by artificially created prosthetic groups. Hayashi T; Matsuo T; Hitomi Y; Okawa K; Suzuki A; Shiro Y; Iizuka T; Hisaeda Y; Ogoshi H J Inorg Biochem; 2002 Jul; 91(1):94-100. PubMed ID: 12121766 [TBL] [Abstract][Full Text] [Related]
14. 13C NMR spectroscopy of core heme carbons as a simple tool to elucidate the coordination state of ferric high-spin heme proteins. Alontaga AY; Bunce RA; Wilks A; Rivera M Inorg Chem; 2006 Oct; 45(22):8876-81. PubMed ID: 17054345 [TBL] [Abstract][Full Text] [Related]
15. Characteristics and mechanism of formation of peroxide-induced heme to protein cross-linking in myoglobin. Reeder BJ; Svistunenko DA; Sharpe MA; Wilson MT Biochemistry; 2002 Jan; 41(1):367-75. PubMed ID: 11772036 [TBL] [Abstract][Full Text] [Related]
16. 1H-NMR study of the mechanism of assembly and equilibrium heme orientation of sperm whale myoglobin reconstituted with protohemin type-isomers. Hauksson JB; La Mar GN; Pande U; Pandey RK; Parish DW; Singh JP; Smith KM Biochim Biophys Acta; 1990 Nov; 1041(2):186-94. PubMed ID: 2265204 [TBL] [Abstract][Full Text] [Related]
17. Human heme oxygenase oxidation of 5- and 15-phenylhemes. Wang J; Niemevz F; Lad L; Huang L; Alvarez DE; Buldain G; Poulos TL; de Montellano PR J Biol Chem; 2004 Oct; 279(41):42593-604. PubMed ID: 15297453 [TBL] [Abstract][Full Text] [Related]
18. Substrate oxidation by the heme edge of fungal peroxidases. Reaction of Coprinus macrorhizus peroxidase with hydrazines and sodium azide. DePillis GD; Ortiz de Montellano PR Biochemistry; 1989 Sep; 28(19):7947-52. PubMed ID: 2611222 [TBL] [Abstract][Full Text] [Related]
19. Trimethylphosphine binding to horse-heart and sperm-whale myoglobins. Kinetics, proton magnetic resonance assignment and nuclear Overhauser effect investigation of the heme pocket. Brunel C; Bondon A; Simonneaux G Eur J Biochem; 1993 Jun; 214(2):405-14. PubMed ID: 8513790 [TBL] [Abstract][Full Text] [Related]
20. Intramolecular translocation of the protein radical formed in the reaction of recombinant sperm whale myoglobin with H2O2. Wilks A; Ortiz de Montellano PR J Biol Chem; 1992 May; 267(13):8827-33. PubMed ID: 1315742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]