These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 1850819)

  • 1. [Transport of six-atom alcohols by enterobacteria].
    Bol'shakova TN; Gershanovich VN
    Mol Gen Mikrobiol Virusol; 1991 Jan; (1):10-6. PubMed ID: 1850819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Specific systems of phosphoenolpyruvate-dependent transport of carbohydrates in enterobacteria].
    Bol'shakova TN; Gershanovich VN
    Mol Gen Mikrobiol Virusol; 1991 Feb; (2):3-9. PubMed ID: 1827656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):26-38. PubMed ID: 1100602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature and properties of hexitol transport systems in Escherichia coli.
    Lengeler J
    J Bacteriol; 1975 Oct; 124(1):39-47. PubMed ID: 1100608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron transport in Escherichia coli: all has not been said and done.
    Grass G
    Biometals; 2006 Apr; 19(2):159-72. PubMed ID: 16718601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pleiotropic function of phosphoenolpyruvate-dependent phosphotransferase system in bacteria. Report 1].
    Gershanovich VN
    Mol Gen Mikrobiol Virusol; 2003; (1):14-26. PubMed ID: 12656043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of glucose entry routes in the Enterobacteriaceae.
    Grimont PA; Bouvet OM
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):109-14. PubMed ID: 2561261
    [No Abstract]   [Full Text] [Related]  

  • 8. [Properties of mutants of bacteria belonging to the genus Erwinia devoid of common components of the phosphoenolpyruvate-dependent phosphotransferase system].
    Datsenko KA; Evtushenko AN; Sergeev KV; Dobrynina OIu; Bol'shakova TN
    Genetika; 2002 Jul; 38(7):904-10. PubMed ID: 12174582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of a mutational lesion to the phosphoenolpyruvate-dependent phosphotransferase system on the transport of hydrolyzable beta-galactosides in Escherichia coli K12].
    Bol'shakova TN; Burd GI; Gershanovich VN
    Biokhimiia; 1974; 39(4):808-10. PubMed ID: 4613390
    [No Abstract]   [Full Text] [Related]  

  • 10. Streptomyces olivaceoviridis possesses a phosphotransferase system that mediates specific, phosphoenolpyruvate-dependent uptake of N-acetylglucosamine.
    Wang F; Xiao X; Saito A; Schrempf H
    Mol Genet Genomics; 2002 Nov; 268(3):344-51. PubMed ID: 12436256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic analysis of the phosphotransferase system in Clostridium botulinum.
    Mitchell WJ; Tewatia P; Meaden PG
    J Mol Microbiol Biotechnol; 2007; 12(1-2):33-42. PubMed ID: 17183209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Species of enterobacteria new to medicine].
    Pokhil SI
    Mikrobiol Z; 1996; 58(3):94-103. PubMed ID: 9044705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Evidence of autogenic regulation of rplJ gene expression in Thermotoga maritima and possibility of autogenic cross-regulation of expression between T. maritima and enterobacteria].
    Paton EB; Zhivolup AN
    Genetika; 1997 Oct; 33(10):1341-4. PubMed ID: 9445798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between beta-galactoside transport system and phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli K12.
    Burd GI; Bol'shakova TN; Gershanovich VN
    Mol Biol; 1973; 7(3):252-6. PubMed ID: 4589445
    [No Abstract]   [Full Text] [Related]  

  • 15. Sugar transport systems of Bifidobacterium longum NCC2705.
    Parche S; Amon J; Jankovic I; Rezzonico E; Beleut M; Barutçu H; Schendel I; Eddy MP; Burkovski A; Arigoni F; Titgemeyer F
    J Mol Microbiol Biotechnol; 2007; 12(1-2):9-19. PubMed ID: 17183207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanisms of carbon catabolite repression in bacteria.
    Deutscher J
    Curr Opin Microbiol; 2008 Apr; 11(2):87-93. PubMed ID: 18359269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the Rcs phosphorelay in Enterobacteriaceae.
    Huang YH; Ferrières L; Clarke DJ
    Res Microbiol; 2006 Apr; 157(3):206-12. PubMed ID: 16427772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Epidemiology of multiresistance in Enterobacteria].
    Martínez Martínez L
    Rev Esp Quimioter; 2006 Mar; 19(1):87-8. PubMed ID: 16688300
    [No Abstract]   [Full Text] [Related]  

  • 19. [Characterization of enterobacteria producing the broad-spectrum antibiotics microcins].
    Khmel' IA; Manokhina IM; Basiuk EI; Metlitskaia AZ; Lipasova VA; Romanova IuM; Bondarenko VM
    Genetika; 1993 May; 29(5):768-76. PubMed ID: 8335234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Response regulator HrpY of Dickeya dadantii 3937 regulates virulence genes not linked to the hrp cluster.
    Yap MN; Yang CH; Charkowski AO
    Mol Plant Microbe Interact; 2008 Mar; 21(3):304-14. PubMed ID: 18257680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.