These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 18508192)
61. Transcript profiling of the androgen signal in normal prostate, benign prostatic hyperplasia, and prostate cancer. Bauman DR; Steckelbroeck S; Peehl DM; Penning TM Endocrinology; 2006 Dec; 147(12):5806-16. PubMed ID: 16959841 [TBL] [Abstract][Full Text] [Related]
62. Bioequivalence studies of tibolone in premenopausal women and effects on expression of the tibolone-metabolizing enzyme AKR1C (aldo-keto reductase) family caused by estradiol. Kang KW; Kim YG J Clin Pharmacol; 2008 Dec; 48(12):1430-7. PubMed ID: 18832293 [TBL] [Abstract][Full Text] [Related]
63. Therapeutic potential of targeting AKR1C2 in the treatment of prostate cancer. Nie M; Li T; Liu P; Wang X Mol Biol Rep; 2024 Sep; 51(1):994. PubMed ID: 39292292 [TBL] [Abstract][Full Text] [Related]
64. Aldo-keto reductase 1C subfamily genes in skin are UV-inducible: possible role in keratinocytes survival. Marín YE; Seiberg M; Lin CB Exp Dermatol; 2009 Jul; 18(7):611-8. PubMed ID: 19320734 [TBL] [Abstract][Full Text] [Related]
65. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Guise CP; Abbattista MR; Singleton RS; Holford SD; Connolly J; Dachs GU; Fox SB; Pollock R; Harvey J; Guilford P; Doñate F; Wilson WR; Patterson AV Cancer Res; 2010 Feb; 70(4):1573-84. PubMed ID: 20145130 [TBL] [Abstract][Full Text] [Related]
66. Elevated expression of AKR1C3 increases resistance of cancer cells to ionizing radiation via modulation of oxidative stress. Xiong W; Zhao J; Yu H; Li X; Sun S; Li Y; Xia Q; Zhang C; He Q; Gao X; Zhang L; Zhou D PLoS One; 2014; 9(11):e111911. PubMed ID: 25419901 [TBL] [Abstract][Full Text] [Related]
67. PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells. Kaarbø M; Mikkelsen OL; Malerød L; Qu S; Lobert VH; Akgul G; Halvorsen T; Maelandsmo GM; Saatcioglu F Cell Oncol; 2010; 32(1-2):11-27. PubMed ID: 20203370 [TBL] [Abstract][Full Text] [Related]
68. [Effect of PI3K/AKT inhibitor on benign prostate hyperplasia and its mechanism: an experimental study]. Jin P; Wang YH; Peng YG; Hu S; Lu Q; Yang LY Zhonghua Nan Ke Xue; 2010 Dec; 16(12):1068-75. PubMed ID: 21348195 [TBL] [Abstract][Full Text] [Related]
69. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation. Sun SQ; Gu X; Gao XS; Li Y; Yu H; Xiong W; Yu H; Wang W; Li Y; Teng Y; Zhou D Oncotarget; 2016 Jul; 7(30):48050-48058. PubMed ID: 27385003 [TBL] [Abstract][Full Text] [Related]
70. Molecular aspects of gefitinib antiproliferative and pro-apoptotic effects in PTEN-positive and PTEN-negative prostate cancer cell lines. Festuccia C; Muzi P; Millimaggi D; Biordi L; Gravina GL; Speca S; Angelucci A; Dolo V; Vicentini C; Bologna M Endocr Relat Cancer; 2005 Dec; 12(4):983-98. PubMed ID: 16322337 [TBL] [Abstract][Full Text] [Related]
71. Activin A stimulates AKR1C3 expression and growth in human prostate cancer. Hofland J; van Weerden WM; Steenbergen J; Dits NF; Jenster G; de Jong FH Endocrinology; 2012 Dec; 153(12):5726-34. PubMed ID: 23024260 [TBL] [Abstract][Full Text] [Related]
72. Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer. Liu C; Lou W; Zhu Y; Yang JC; Nadiminty N; Gaikwad NW; Evans CP; Gao AC Cancer Res; 2015 Apr; 75(7):1413-22. PubMed ID: 25649766 [TBL] [Abstract][Full Text] [Related]
73. Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Matsunaga T; Hojo A; Yamane Y; Endo S; El-Kabbani O; Hara A Chem Biol Interact; 2013 Feb; 202(1-3):234-42. PubMed ID: 23165153 [TBL] [Abstract][Full Text] [Related]
74. EGFR signaling pathway negatively regulates PSA expression and secretion via the PI3K-Akt pathway in LNCaP prostate cancer cells. Hakariya T; Shida Y; Sakai H; Kanetake H; Igawa T Biochem Biophys Res Commun; 2006 Mar; 342(1):92-100. PubMed ID: 16472761 [TBL] [Abstract][Full Text] [Related]
75. Steroid hormone transforming aldo-keto reductases and cancer. Penning TM; Byrns MC Ann N Y Acad Sci; 2009 Feb; 1155():33-42. PubMed ID: 19250190 [TBL] [Abstract][Full Text] [Related]
76. Computational modeling studies reveal the origin of the binding preference of 3-(3,4-di hydroisoquinolin-2(1H)-ylsulfonyl)benzoic acids for AKR1C3 over its isoforms. Kong X; Xing E; Wu S; Zhuang T; Li PK; Li C; Cheng X Protein Sci; 2022 Dec; 31(12):e4499. PubMed ID: 36335585 [TBL] [Abstract][Full Text] [Related]
77. Differential expression of type 2 3α/type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) in tumors of the central nervous system. Park AL; Lin HK; Yang Q; Sing CW; Fan M; Mapstone TB; Gross NL; Gumerlock MK; Martin MD; Rabb CH; Fung KM Int J Clin Exp Pathol; 2010 Mar; 3(8):743-54. PubMed ID: 21151387 [TBL] [Abstract][Full Text] [Related]
78. Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation. Kim HJ; Lee YS; Won EH; Chang IH; Kim TH; Park ES; Kim MK; Kim W; Myung SC BJU Int; 2011 Jul; 108(2 Pt 2):E77-83. PubMed ID: 21050358 [TBL] [Abstract][Full Text] [Related]
79. Screening baccharin analogs as selective inhibitors against type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Zang T; Verma K; Chen M; Jin Y; Trippier PC; Penning TM Chem Biol Interact; 2015 Jun; 234():339-48. PubMed ID: 25555457 [TBL] [Abstract][Full Text] [Related]
80. Induction of 1C aldoketoreductases and other drug dose-dependent genes upon acquisition of anthracycline resistance. Veitch ZW; Guo B; Hembruff SL; Bewick AJ; Heibein AD; Eng J; Cull S; Maclean DA; Parissenti AM Pharmacogenet Genomics; 2009 Jun; 19(6):477-88. PubMed ID: 19440163 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]