These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18508196)

  • 41. Determination of ammonium in marine waters using a gas diffusion multicommuted flow injection system with in-line prevention of metal hydroxides precipitation.
    Oliveira SM; Marques da Silva Lopes TI; Tóth IV; Santos Silva Rangel AO
    J Environ Monit; 2009 Jan; 11(1):228-34. PubMed ID: 19137162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organic matrix in produced water from the Osage-Skiatook petroleum environmental research site, Osage county, Oklahoma.
    Sirivedhin T; Dallbauman L
    Chemosphere; 2004 Nov; 57(6):463-9. PubMed ID: 15350408
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell.
    Pillai KC; Kwon TO; Park BB; Moon IS
    J Hazard Mater; 2009 May; 164(2-3):812-9. PubMed ID: 18838217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Removal of arsenic from water: effects of competing anions on As(III) removal in KMnO4-Fe(II) process.
    Guan X; Dong H; Ma J; Jiang L
    Water Res; 2009 Aug; 43(15):3891-9. PubMed ID: 19573891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rate enhancing effect of bromide on the removal of ammonia at Ti/PbO2 anode.
    Neti NR; Killedar D; Kaul SN
    Ann Chim; 2003; 93(9-10):783-90. PubMed ID: 14672370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrocoagulation of synthetically prepared waters containing high concentration of NOM using iron cast electrodes.
    Yildiz YS; Koparal AS; Irdemez S; Keskinler B
    J Hazard Mater; 2007 Jan; 139(2):373-80. PubMed ID: 16863679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface chemistry of RuO(2)/IrO(2)/TiO(2) mixed-oxide electrodes: secondary ion mass spectrometric study of the changes induced by electrochemical treatment.
    Barison S; De Battisti A; Fabrizio M; Daolio S; Piccirillo C
    Rapid Commun Mass Spectrom; 2000; 14(23):2165-9. PubMed ID: 11114026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: pilot-scale investigation for estuarine and near shore applications.
    Tansel B; Pascual B
    Chemosphere; 2011 Nov; 85(7):1182-6. PubMed ID: 21813155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal of fluoride from water by using granular red mud: Batch and column studies.
    Tor A; Danaoglu N; Arslan G; Cengeloglu Y
    J Hazard Mater; 2009 May; 164(1):271-8. PubMed ID: 18799263
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrochemical oxidation for the treatment of textile industry wastewater.
    Radha KV; Sridevi V; Kalaivani K
    Bioresour Technol; 2009 Jan; 100(2):987-90. PubMed ID: 18760596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse.
    Khadhraoui M; Trabelsi H; Ksibi M; Bouguerra S; Elleuch B
    J Hazard Mater; 2009 Jan; 161(2-3):974-81. PubMed ID: 18515006
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes.
    Chen SS; Li CW; Hsu HD; Lee PC; Chang YM; Yang CH
    J Hazard Mater; 2009 Jan; 161(2-3):1075-80. PubMed ID: 18555595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalytic system.
    Selcuk H; Sarikaya HZ; Bekbolet M; Anderson MA
    Chemosphere; 2006 Feb; 62(5):715-21. PubMed ID: 16005936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions.
    Liu Y; Li L; Goel R
    J Hazard Mater; 2009 Aug; 167(1-3):959-65. PubMed ID: 19250739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using RuO(2) anode for chlorine dioxide production in an un-divided electrochemical cell.
    Chandrasekara Pillai K; Kwon TO; Park BB; Moon IS
    Water Sci Technol; 2010; 61(8):2151-60. PubMed ID: 20389015
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrate removal from electro-oxidized landfill leachate by ion exchange.
    Primo O; Rivero MJ; Urtiaga AM; Ortiz I
    J Hazard Mater; 2009 May; 164(1):389-93. PubMed ID: 18805640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes.
    Skoumal M; Arias C; Cabot PL; Centellas F; Garrido JA; Rodríguez RM; Brillas E
    Chemosphere; 2008 Apr; 71(9):1718-29. PubMed ID: 18262595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An electrochemical method for decreasing the concentration of sulfate and molybdenum ions in industrial wastewater.
    Panayotova M; Panayotov V
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(1):173-83. PubMed ID: 15030150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of Cd(II) from aqueous solutions using clarified sludge.
    Naiya TK; Bhattacharya AK; Das SK
    J Colloid Interface Sci; 2008 Sep; 325(1):48-56. PubMed ID: 18571663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Batch adsorption studies for chromium removal.
    Sivamani S; Prince Immanuel V
    J Environ Sci Eng; 2008 Jan; 50(1):11-6. PubMed ID: 19192921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.