These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18508506)

  • 1. Nitric oxide the gatekeeper of endothelial vasomotor control.
    Feletou M; Tang EH; Vanhoutte PM
    Front Biosci; 2008 May; 13():4198-217. PubMed ID: 18508506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular endothelium: vasoactive mediators.
    Vanhoutte PM; Mombouli JV
    Prog Cardiovasc Dis; 1996; 39(3):229-38. PubMed ID: 8970575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial dysfunction and vascular disease - a 30th anniversary update.
    Vanhoutte PM; Shimokawa H; Feletou M; Tang EH
    Acta Physiol (Oxf); 2017 Jan; 219(1):22-96. PubMed ID: 26706498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide: orchestrator of endothelium-dependent responses.
    Félétou M; Köhler R; Vanhoutte PM
    Ann Med; 2012 Nov; 44(7):694-716. PubMed ID: 21895549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular effects of endothelin-1 in essential hypertension: relationship with cyclooxygenase-derived endothelium-dependent contracting factors and nitric oxide.
    Taddei S; Virdis A; Ghiadoni L; Salvetti A
    J Cardiovasc Pharmacol; 2000; 35(4 Suppl 2):S37-40. PubMed ID: 10976779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retina evokes biphasic relaxations in retinal artery unrelated to endothelium, K(V), K(ATP), K(Ca) channels and methyl palmitate.
    Takir S; Uydeş-Doğan BS; Ozdemir O
    Microvasc Res; 2011 May; 81(3):295-302. PubMed ID: 21382382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of endothelium-derived nitric oxide in relaxations to levcromakalim in the rat aorta.
    Kinoshita H; Iwahashi S; Kakutani T; Mizumoto K; Iranami H; Hatano Y
    Jpn J Pharmacol; 1999 Dec; 81(4):362-6. PubMed ID: 10669041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Nitric oxide in endothelium-dependent vasodilatation. Bases of the unity of the endothelium and smooth muscle cells in paracrine metabolic regulation].
    Titov VN
    Klin Lab Diagn; 2007 Feb; (2):23-4, 33-9. PubMed ID: 17436699
    [No Abstract]   [Full Text] [Related]  

  • 9. Influence of diabetes mellitus, hypercholesterolemia, and their combination on EDHF-mediated responses in mice.
    Morikawa K; Matoba T; Kubota H; Hatanaka M; Fujiki T; Takahashi S; Takeshita A; Shimokawa H
    J Cardiovasc Pharmacol; 2005 May; 45(5):485-90. PubMed ID: 15821445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle.
    Liang CF; Au AL; Leung SW; Ng KF; Félétou M; Kwan YW; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2010 Jul; 334(1):223-31. PubMed ID: 20332186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nitric oxide- and prostaglandin-independent component of the renal vasodilator effect of thimerosal is mediated by epoxyeicosatrienoic acids.
    Chen YJ; Jiang H; Quilley J
    J Pharmacol Exp Ther; 2003 Mar; 304(3):1292-8. PubMed ID: 12604709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary endothelial dysfunction: hypertension and heart failure.
    Boulanger CM
    J Mol Cell Cardiol; 1999 Jan; 31(1):39-49. PubMed ID: 10072714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelin receptor-mediated vasodilatation: effects of organ culture.
    Nilsson D; Wackenfors A; Gustafsson L; Ugander M; Paulsson P; Ingemansson R; Edvinsson L; Malmsjö M
    Eur J Pharmacol; 2008 Jan; 579(1-3):233-40. PubMed ID: 17964568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Endothelial dysfunction and angiotensin-converting enzyme inhibitors in coronary disease].
    Mélon P
    Rev Med Liege; 1998 Jun; 53(6):353-4. PubMed ID: 9713215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-derived hyperpolarizing factor and endothelium-dependent relaxations.
    Nagao T; Vanhoutte PM
    Am J Respir Cell Mol Biol; 1993 Jan; 8(1):1-6. PubMed ID: 8380248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of endothelial nitric oxide in the regulation of the vasomotor system].
    Michel JB
    Pathol Biol (Paris); 1998 Mar; 46(3):181-9. PubMed ID: 9769914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelin-1 vasoconstriction and the age-related decline in endothelium-dependent vasodilatation in men.
    Westby CM; Weil BR; Greiner JJ; Stauffer BL; DeSouza CA
    Clin Sci (Lond); 2011 Jun; 120(11):485-91. PubMed ID: 21143196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturational changes in endothelium-derived relaxations in newborn piglet pulmonary circulation.
    Perreault T; De Marte J
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H302-9. PubMed ID: 8447447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regular aerobic exercise reduces endothelin-1-mediated vasoconstrictor tone in overweight and obese adults.
    Dow CA; Stauffer BL; Brunjes DL; Greiner JJ; DeSouza CA
    Exp Physiol; 2017 Sep; 102(9):1133-1142. PubMed ID: 28635124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels.
    Miura H; Liu Y; Gutterman DD
    Circulation; 1999 Jun; 99(24):3132-8. PubMed ID: 10377076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.