These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. A Complete Proteomic Workflow to Study Brain-Related Disorders via Postmortem Tissue. Reis-de-Oliveira G; Fioramonte M; Martins-de-Souza D Methods Mol Biol; 2019; 1916():319-328. PubMed ID: 30535709 [TBL] [Abstract][Full Text] [Related]
8. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Boisvert FM; Lam YW; Lamont D; Lamond AI Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476 [TBL] [Abstract][Full Text] [Related]
9. Use of proteomics for the identification of novel drug targets in brain diseases. Morón JA; Devi LA J Neurochem; 2007 Jul; 102(2):306-15. PubMed ID: 17419802 [TBL] [Abstract][Full Text] [Related]
10. Brain quantitative proteomics combining GeLC-MS and isotope-coded protein labeling (ICPL). Maccarrone G; Lebar M; Martins-de-Souza D Methods Mol Biol; 2014; 1156():175-85. PubMed ID: 24791988 [TBL] [Abstract][Full Text] [Related]
11. Identifying bona fide components of an organelle by isotope-coded labeling of subcellular fractions : an example in peroxisomes. Marelli M; Nesvizhskii AI; Aitchison JD Methods Mol Biol; 2008; 432():357-71. PubMed ID: 18370030 [TBL] [Abstract][Full Text] [Related]
12. Human post-mortem synapse proteome integrity screening for proteomic studies of postsynaptic complexes. Bayés À; Collins MO; Galtrey CM; Simonnet C; Roy M; Croning MD; Gou G; van de Lagemaat LN; Milward D; Whittle IR; Smith C; Choudhary JS; Grant SG Mol Brain; 2014 Nov; 7():88. PubMed ID: 25429717 [TBL] [Abstract][Full Text] [Related]
13. Sample preparation project for the subcellular proteome of mouse liver. Song Y; Hao Y; Sun A; Li T; Li W; Guo L; Yan Y; Geng C; Chen N; Zhong F; Wei H; Jiang Y; He F Proteomics; 2006 Oct; 6(19):5269-77. PubMed ID: 16941572 [TBL] [Abstract][Full Text] [Related]
14. Neuroproteomics in neurotrauma. Ottens AK; Kobeissy FH; Golden EC; Zhang Z; Haskins WE; Chen SS; Hayes RL; Wang KK; Denslow ND Mass Spectrom Rev; 2006; 25(3):380-408. PubMed ID: 16498609 [TBL] [Abstract][Full Text] [Related]
15. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Calderón-Celis F; Encinar JR; Sanz-Medel A Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227 [TBL] [Abstract][Full Text] [Related]
17. Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. Tribl F; Marcus K; Bringmann G; Meyer HE; Gerlach M; Riederer P J Neural Transm (Vienna); 2006 Aug; 113(8):1041-54. PubMed ID: 16835691 [TBL] [Abstract][Full Text] [Related]
18. Quantitative proteome analysis using isotope-coded affinity tags and mass spectrometry. Shiio Y; Aebersold R Nat Protoc; 2006; 1(1):139-45. PubMed ID: 17406225 [TBL] [Abstract][Full Text] [Related]
19. Neuroproteomics on the Rise (Part I). Uddin MS; Athanasios A; Barreto GE; Ashraf GM Curr Protein Pept Sci; 2020; 21(12):1144-1145. PubMed ID: 33461450 [No Abstract] [Full Text] [Related]
20. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Wienkoop S; Weiss J; May P; Kempa S; Irgang S; Recuenco-Munoz L; Pietzke M; Schwemmer T; Rupprecht J; Egelhofer V; Weckwerth W Mol Biosyst; 2010 Jun; 6(6):1018-31. PubMed ID: 20358043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]