BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 18508914)

  • 1. Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation.
    Ashok A; Hegde RS
    Mol Biol Cell; 2008 Aug; 19(8):3463-76. PubMed ID: 18508914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective processing and metabolism of disease-causing mutant prion proteins.
    Ashok A; Hegde RS
    PLoS Pathog; 2009 Jun; 5(6):e1000479. PubMed ID: 19543376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fate of PrP GPI-anchor signal peptide is modulated by P238S pathogenic mutation.
    Guizzunti G; Zurzolo C
    Traffic; 2014 Jan; 15(1):78-93. PubMed ID: 24112521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenic mutations in the glycosylphosphatidylinositol signal peptide of PrP modulate its topology in neuroblastoma cells.
    Gu Y; Singh A; Bose S; Singh N
    Mol Cell Neurosci; 2008 Apr; 37(4):647-56. PubMed ID: 18325785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring.
    Hizume M; Kobayashi A; Mizusawa H; Kitamoto T
    Biochem Biophys Res Commun; 2010 Jan; 391(4):1681-6. PubMed ID: 20040362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Familial prion protein mutants inhibit Hrd1-mediated retrotranslocation of misfolded proteins by depleting misfolded protein sensor BiP.
    Peters SL; Déry MA; LeBlanc AC
    Hum Mol Genet; 2016 Mar; 25(5):976-88. PubMed ID: 26740554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation.
    Drisaldi B; Stewart RS; Adles C; Stewart LR; Quaglio E; Biasini E; Fioriti L; Chiesa R; Harris DA
    J Biol Chem; 2003 Jun; 278(24):21732-43. PubMed ID: 12663673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic Reticulum.
    Stewart RS; Drisaldi B; Harris DA
    Mol Biol Cell; 2001 Apr; 12(4):881-9. PubMed ID: 11294893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ER entry pathway and glycosylation of GPI-anchored proteins are determined by N-terminal signal sequence and C-terminal GPI-attachment sequence.
    Hirata T; Yang J; Tomida S; Tokoro Y; Kinoshita T; Fujita M; Kizuka Y
    J Biol Chem; 2022 Oct; 298(10):102444. PubMed ID: 36055406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylphosphatidylinositol Anchor Modification Machinery Deficiency Is Responsible for the Formation of Pro-Prion Protein (PrP) in BxPC-3 Protein and Increases Cancer Cell Motility.
    Yang L; Gao Z; Hu L; Wu G; Yang X; Zhang L; Zhu Y; Wong BS; Xin W; Sy MS; Li C
    J Biol Chem; 2016 Feb; 291(8):3905-17. PubMed ID: 26683373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Export of a misprocessed GPI-anchored protein from the endoplasmic reticulum in vitro in an ATP- and cytosol-dependent manner.
    Ali BR; Claxton S; Field MC
    FEBS Lett; 2000 Oct; 483(1):32-6. PubMed ID: 11033351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection.
    Marshall KE; Hughson A; Vascellari S; Priola SA; Sakudo A; Onodera T; Baron GS
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27847358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prion protein-related proteins from zebrafish are complex glycosylated and contain a glycosylphosphatidylinositol anchor.
    Miesbauer M; Bamme T; Riemer C; Oidtmann B; Winklhofer KF; Baier M; Tatzelt J
    Biochem Biophys Res Commun; 2006 Mar; 341(1):218-24. PubMed ID: 16414019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncleaved signals for glycosylphosphatidylinositol anchoring cause retention of precursor proteins in the endoplasmic reticulum.
    Delahunty MD; Stafford FJ; Yuan LC; Shaz D; Bonifacino JS
    J Biol Chem; 1993 Jun; 268(16):12017-27. PubMed ID: 8505326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistent ER stress causes GPI anchor deficit to convert a GPI-anchored prion protein into pro-PrP via the ATF6-miR449c-5p-PIGV axis.
    Li J; Li S; Yu S; Yang J; Ke J; Li H; Chen H; Lu M; Sy MS; Gao Z; Li C
    J Biol Chem; 2023 Aug; 299(8):104982. PubMed ID: 37390992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of the prion protein to the cytosol: mechanisms and consequences.
    Miesbauer M; Rambold AS; Winklhofer KF; Tatzelt J
    Curr Issues Mol Biol; 2010; 12(2):109-18. PubMed ID: 19767654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proper protein folding in the endoplasmic reticulum is required for attachment of a glycosylphosphatidylinositol anchor in plants.
    Shin YJ; Vavra U; Strasser R
    Plant Physiol; 2021 Aug; 186(4):1878-1892. PubMed ID: 33930152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient glycosylphosphatidylinositol (GPI) modification of membrane proteins requires a C-terminal anchoring signal of marginal hydrophobicity.
    Galian C; Björkholm P; Bulleid N; von Heijne G
    J Biol Chem; 2012 May; 287(20):16399-409. PubMed ID: 22431723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Misfolded GPI-anchored proteins are escorted through the secretory pathway by ER-derived factors.
    Zavodszky E; Hegde RS
    Elife; 2019 May; 8():. PubMed ID: 31094677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrophobic core region governs mutant prion protein aggregation and intracellular retention.
    Biasini E; Tapella L; Restelli E; Pozzoli M; Massignan T; Chiesa R
    Biochem J; 2010 Sep; 430(3):477-86. PubMed ID: 20626348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.