BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 18509337)

  • 1. Cortical control of a prosthetic arm for self-feeding.
    Velliste M; Perel S; Spalding MC; Whitford AS; Schwartz AB
    Nature; 2008 Jun; 453(7198):1098-101. PubMed ID: 18509337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroscience: Brain control of a helping hand.
    Kalaska JF
    Nature; 2008 Jun; 453(7198):994-5. PubMed ID: 18509339
    [No Abstract]   [Full Text] [Related]  

  • 3. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
    Wessberg J; Stambaugh CR; Kralik JD; Beck PD; Laubach M; Chapin JK; Kim J; Biggs SJ; Srinivasan MA; Nicolelis MA
    Nature; 2000 Nov; 408(6810):361-5. PubMed ID: 11099043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Information conveyed through brain-control: cursor versus robot.
    Taylor DM; Tillery SI; Schwartz AB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):195-9. PubMed ID: 12899273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys.
    Wessberg J; Nicolelis MA
    J Cogn Neurosci; 2004; 16(6):1022-35. PubMed ID: 15298789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing information about arm movement direction in single channels of local and epicortical field potentials from monkey and human motor cortex.
    Mehring C; Nawrot MP; de Oliveira SC; Vaadia E; Schulze-Bonhage A; Aertsen A; Ball T
    J Physiol Paris; 2004; 98(4-6):498-506. PubMed ID: 16310349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct cortical control of 3D neuroprosthetic devices.
    Taylor DM; Tillery SI; Schwartz AB
    Science; 2002 Jun; 296(5574):1829-32. PubMed ID: 12052948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
    Hochberg LR; Serruya MD; Friehs GM; Mukand JA; Saleh M; Caplan AH; Branner A; Chen D; Penn RD; Donoghue JP
    Nature; 2006 Jul; 442(7099):164-71. PubMed ID: 16838014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task.
    Francis JT; Chapin JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):172-4. PubMed ID: 16792286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instant neural control of a movement signal.
    Serruya MD; Hatsopoulos NG; Paninski L; Fellows MR; Donoghue JP
    Nature; 2002 Mar; 416(6877):141-2. PubMed ID: 11894084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of anthropomorphic multi-D.O.F. master-slave arm for mutual telexistence.
    Tadakuma R; Asahara Y; Kajimoto H; Kawakami N; Tachi S
    IEEE Trans Vis Comput Graph; 2005; 11(6):626-36. PubMed ID: 16270856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turning thought into action.
    Hochberg LR
    N Engl J Med; 2008 Sep; 359(11):1175-7. PubMed ID: 18784110
    [No Abstract]   [Full Text] [Related]  

  • 14. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex.
    Chapin JK; Moxon KA; Markowitz RS; Nicolelis MA
    Nat Neurosci; 1999 Jul; 2(7):664-70. PubMed ID: 10404201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.
    Gupta R; Ashe J
    IEEE Trans Neural Syst Rehabil Eng; 2009 Jun; 17(3):254-62. PubMed ID: 19497832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the primate motor cortex and free arm movements in three-dimensional space: a robot arm system controlled by an artificial neural network.
    Dauffenbach LM
    Biomed Sci Instrum; 1999; 35():360-5. PubMed ID: 11143378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations.
    Wodlinger B; Downey JE; Tyler-Kabara EC; Schwartz AB; Boninger ML; Collinger JL
    J Neural Eng; 2015 Feb; 12(1):016011. PubMed ID: 25514320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.