BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 18509648)

  • 1. Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase.
    Schäppi MG; Jaquet V; Belli DC; Krause KH
    Semin Immunopathol; 2008 Jul; 30(3):255-71. PubMed ID: 18509648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetics and immunopathology of chronic granulomatous disease.
    Stasia MJ; Li XJ
    Semin Immunopathol; 2008 Jul; 30(3):209-35. PubMed ID: 18509647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired macrophage function following bacterial stimulation in chronic granulomatous disease.
    Rahman FZ; Hayee B; Chee R; Segal AW; Smith AM
    Immunology; 2009 Oct; 128(2):253-9. PubMed ID: 19740382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease.
    Meissner F; Seger RA; Moshous D; Fischer A; Reichenbach J; Zychlinsky A
    Blood; 2010 Sep; 116(9):1570-3. PubMed ID: 20495074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched fungal beta-glucan causes hyperinflammation and necrosis in phagocyte NADPH oxidase-deficient mice.
    Schäppi M; Deffert C; Fiette L; Gavazzi G; Herrmann F; Belli D; Krause KH
    J Pathol; 2008 Mar; 214(4):434-44. PubMed ID: 18098349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does Pioglitazone Lead to Neutrophil Extracellular Traps Formation in Chronic Granulomatous Disease Patients?
    Hule GP; Bargir UA; Kulkarni M; Kambli P; Taur P; Desai M; Madkaikar MR
    Front Immunol; 2019; 10():1739. PubMed ID: 31428088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The p47phox mouse knock-out model of chronic granulomatous disease.
    Jackson SH; Gallin JI; Holland SM
    J Exp Med; 1995 Sep; 182(3):751-8. PubMed ID: 7650482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidase limits innate immune responses in the lungs in mice.
    Segal BH; Han W; Bushey JJ; Joo M; Bhatti Z; Feminella J; Dennis CG; Vethanayagam RR; Yull FE; Capitano M; Wallace PK; Minderman H; Christman JW; Sporn MB; Chan J; Vinh DC; Holland SM; Romani LR; Gaffen SL; Freeman ML; Blackwell TS
    PLoS One; 2010 Mar; 5(3):e9631. PubMed ID: 20300512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory T cell features in chronic granulomatous disease.
    van de Geer A; Cuadrado E; Slot MC; van Bruggen R; Amsen D; Kuijpers TW
    Clin Exp Immunol; 2019 Aug; 197(2):222-229. PubMed ID: 30924925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current concepts of hyperinflammation in chronic granulomatous disease.
    Rieber N; Hector A; Kuijpers T; Roos D; Hartl D
    Clin Dev Immunol; 2012; 2012():252460. PubMed ID: 21808651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of atherosclerosis in chronic granulomatous disease.
    Sibley CT; Estwick T; Zavodni A; Huang CY; Kwan AC; Soule BP; Long Priel DA; Remaley AT; Rudman Spergel AK; Turkbey EB; Kuhns DB; Holland SM; Malech HL; Zarember KA; Bluemke DA; Gallin JI
    Circulation; 2014 Dec; 130(23):2031-9. PubMed ID: 25239440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Clinical and molecular inflammatory alterations in chronic granulomatous disease].
    León-Lara X; Rodríguez-D'Cid R; Rioja-Valencia R; Ayala-Alvirde A; Aliaga-Taipe IL; Espinosa-Padilla S; Blancas-Galicia L
    Rev Alerg Mex; 2020; 67(4):370-380. PubMed ID: 33631904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diminished production of anti-inflammatory mediators during neutrophil apoptosis and macrophage phagocytosis in chronic granulomatous disease (CGD).
    Brown JR; Goldblatt D; Buddle J; Morton L; Thrasher AJ
    J Leukoc Biol; 2003 May; 73(5):591-9. PubMed ID: 12714573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease.
    Fernandez-Boyanapalli RF; Frasch SC; Thomas SM; Malcolm KC; Nicks M; Harbeck RJ; Jakubzick CV; Nemenoff R; Henson PM; Holland SM; Bratton DL
    J Allergy Clin Immunol; 2015 Feb; 135(2):517-527.e12. PubMed ID: 25498313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic granulomatous disease.
    Loffredo L
    Intern Emerg Med; 2011 Oct; 6 Suppl 1():125-8. PubMed ID: 22009624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Levels of IL-18 and IFN-γ in Chronically Inflamed Tissue in Chronic Granulomatous Disease.
    Meda Spaccamela V; Valencia RG; Pastukhov O; Duppenthaler A; Dettmer MS; Erb J; Steiner UC; Hillinger S; Speckmann C; Ehl S; Reichenbach J; Siler U
    Front Immunol; 2019; 10():2236. PubMed ID: 31681257
    [No Abstract]   [Full Text] [Related]  

  • 17. [Infectious and inflammatory gastrointestinal manifestations of chronic granulomatous disease].
    Toledo M; Campos A; Scheffler-Mendoza S; León-Lara X; Onuma-Zamayoa H; Espinosa S; Yamazaki-Nakashimada MA; Blancas-Galicia L
    Rev Alerg Mex; 2021; 68(3):198-205. PubMed ID: 34634850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired host defence against Mycobacterium avium in mice with chronic granulomatous disease.
    Fujita M; Harada E; Matsumoto T; Mizuta Y; Ikegame S; Ouchi H; Inoshima I; Yoshida S; Watanabe K; Nakanishi Y
    Clin Exp Immunol; 2010 Jun; 160(3):457-60. PubMed ID: 20089078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intersecting Stories of the Phagocyte NADPH Oxidase and Chronic Granulomatous Disease.
    Nauseef WM; Clark RA
    Methods Mol Biol; 2019; 1982():3-16. PubMed ID: 31172463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis.
    Bagaitkar J; Pech NK; Ivanov S; Austin A; Zeng MY; Pallat S; Huang G; Randolph GJ; Dinauer MC
    Blood; 2015 Dec; 126(25):2724-33. PubMed ID: 26443623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.