These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1851006)

  • 1. Steady-state kinetics of autoxidation of NAD(P)H initiated by hydroperoxyl radical, the acid form of superoxide anion radical.
    Fujimori K; Nakajima H
    Biochem Biophys Res Commun; 1991 Apr; 176(2):846-51. PubMed ID: 1851006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of NADH catalysed by human xanthine oxidase: generation of superoxide anion.
    Sanders SA; Harrison R; Eisenthal R
    Biochem Soc Trans; 1996 Feb; 24(1):13S. PubMed ID: 8674616
    [No Abstract]   [Full Text] [Related]  

  • 3. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.
    Moreno SN; Mason RP; Docampo R
    J Biol Chem; 1984 Dec; 259(23):14609-16. PubMed ID: 6094566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH oxidase activity of human xanthine oxidoreductase--generation of superoxide anion.
    Sanders SA; Eisenthal R; Harrison R
    Eur J Biochem; 1997 May; 245(3):541-8. PubMed ID: 9182988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Hydroxyguanidine compound 1-(3,4-dimethoxy- 2-chlorobenzylideneamino)-3-hydroxyguanidine inhibits the xanthine oxidase mediated generation of superoxide radical.
    Dambrova M; Baumane L; Kiuru A; Kalvinsh I; Wikberg JE
    Arch Biochem Biophys; 2000 May; 377(1):101-8. PubMed ID: 10775447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of oxygen activation by nitrofurantoin and relevance to its toxicity.
    Youngman RJ; Osswald WF; Elstner EF
    Biochem Pharmacol; 1982 Dec; 31(23):3723-9. PubMed ID: 6297496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the superoxide anion in the xanthine oxidase-induced autoxidation of linoleic acid.
    Thomas MJ; Mehl KS; Pryor WA
    Biochem Biophys Res Commun; 1978 Aug; 83(3):927-32. PubMed ID: 213076
    [No Abstract]   [Full Text] [Related]  

  • 8. NADH photo-oxidation is enhanced by a partially purified lambda-crystallin fraction from rabbit lens.
    Bando M; Oka M; Kawai K; Obazawa H; Takehana M
    Mol Vis; 2007 Sep; 13():1722-9. PubMed ID: 17960110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide generation by lipoxygenase in the presence of NADH and NADPH.
    Roy P; Roy SK; Mitra A; Kulkarni AP
    Biochim Biophys Acta; 1994 Sep; 1214(2):171-9. PubMed ID: 7918597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production.
    Maia L; Duarte RO; Ponces-Freire A; Moura JJ; Mira L
    J Biol Inorg Chem; 2007 Aug; 12(6):777-87. PubMed ID: 17440754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production.
    Radi R; Tan S; Prodanov E; Evans RA; Parks DA
    Biochim Biophys Acta; 1992 Jul; 1122(2):178-82. PubMed ID: 1322703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reaction of reduced xanthine dehydrogenase with molecular oxygen. Reaction kinetics and measurement of superoxide radical.
    Harris CM; Massey V
    J Biol Chem; 1997 Mar; 272(13):8370-9. PubMed ID: 9079661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pitfalls of using lucigenin in endothelial cells: implications for NAD(P)H dependent superoxide formation.
    Sohn HY; Keller M; Gloe T; Crause P; Pohl U
    Free Radic Res; 2000 Mar; 32(3):265-72. PubMed ID: 10730825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of superoxide anion radical in the reduction of ferritin iron by xanthine oxidase.
    Williams DM; Lee GR; Cartwright GE
    J Clin Invest; 1974 Feb; 53(2):665-7. PubMed ID: 11344583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of heme nonapeptide derived from cytochrome c with microsomal reductases.
    Végh M; Kramer M; Horváth I
    Biochim Biophys Acta; 1986 Jun; 882(1):6-11. PubMed ID: 3011109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme.
    O'Donnell VB; Azzi A
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):805-12. PubMed ID: 8836123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allopurinol-insensitive oxygen radical formation by milk xanthine oxidase systems.
    Nakamura M
    J Biochem; 1991 Sep; 110(3):450-6. PubMed ID: 1663114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [NADH- and NADPH-dependent formation of superoxide radicals in liver nuclei].
    Vartanian LS; Gurevich SM
    Biokhimiia; 1989 Jun; 54(6):1020-5. PubMed ID: 2551393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiation of a superoxide-dependent chain oxidation of lactate dehydrogenase-bound NADH by oxidants of low and high reactivity.
    Petrat F; Bramey T; Kirsch M; De Groot H
    Free Radic Res; 2005 Oct; 39(10):1043-57. PubMed ID: 16298730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a direct interaction of superoxide anion radical with carnosine.
    Klebanov GI; Teselkin YuO ; Babenkova IV; Popov IN; Levin G; Tyulina OV; Boldyrev AA; Vladimirov YuA
    Biochem Mol Biol Int; 1997 Sep; 43(1):99-106. PubMed ID: 9315287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.