These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1851006)

  • 21. Is reduction of the sulfonated tetrazolium 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2-tetrazolium 5-carboxanilide a reliable measure of intracellular superoxide production?
    Benov L; Fridovich I
    Anal Biochem; 2002 Nov; 310(2):186-90. PubMed ID: 12423637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of superoxide anion generation catalyzed by xanthine oxidase with alkyl caffeates and the scavenging activity.
    Masuoka N; Kubo I
    Int J Food Sci Nutr; 2016; 67(3):283-7. PubMed ID: 26940252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of chelating agents and superoxide on human neutrophil NAD(P)H oxidation.
    Goetz MB; Proctor RA
    Anal Biochem; 1984 Feb; 137(1):230-5. PubMed ID: 6329025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus.
    Grunden AM; Jenney FE; Ma K; Ji M; Weinberg MV; Adams MW
    Appl Environ Microbiol; 2005 Mar; 71(3):1522-30. PubMed ID: 15746356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-oxidation of NADH and NADPH by a mammalian 15-lipoxygenase: inhibition of lipoxygenase activity at near-physiological NADH concentrations.
    O'donnell VB; Kühn H
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):203-8. PubMed ID: 9355754
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free-radical chain oxidation of 2-nitropropane initiated and propagated by superoxide.
    Kuo CF; Fridovich I
    Biochem J; 1986 Jul; 237(2):505-10. PubMed ID: 3026320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The mechanism of liver microsomal lipid peroxidation.
    Pederson TC; Aust SD
    Biochim Biophys Acta; 1975 Apr; 385(2):232-41. PubMed ID: 236006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state.
    Buettner GR; Ng CF; Wang M; Rodgers VG; Schafer FQ
    Free Radic Biol Med; 2006 Oct; 41(8):1338-50. PubMed ID: 17015180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction of mercuric ion in vitro by superoxide anion.
    Aikoh H
    Physiol Chem Phys Med NMR; 2002; 34(2):185-9. PubMed ID: 12841335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ursodeoxycholic acid and superoxide anion.
    Ljubuncic P; Abu-Salach O; Bomzon A
    World J Gastroenterol; 2005 Aug; 11(31):4875-8. PubMed ID: 16097062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate inhibition of xanthine oxidase and its influence on superoxide radical production.
    Rubbo H; Radi R; Prodanov E
    Biochim Biophys Acta; 1991 Aug; 1074(3):386-91. PubMed ID: 1653611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAD(P)H oxidation elicits anion superoxide formation in radish plasmalemma vesicles.
    Vianello A; Macrì F
    Biochim Biophys Acta; 1989 Apr; 980(2):202-8. PubMed ID: 2539193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superoxide-driven NAD(P)H oxidation induced by EDTA-manganese complex and mercaptoethanol.
    Paoletti F; Mocali A; Aldinucci D
    Chem Biol Interact; 1990; 76(1):3-18. PubMed ID: 2168295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of iodonitrotetrazolium violet by superoxide radicals.
    Podczasy JJ; Wei R
    Biochem Biophys Res Commun; 1988 Feb; 150(3):1294-301. PubMed ID: 2829896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide.
    Fridovich SE; Porter NA
    J Biol Chem; 1981 Jan; 256(1):260-5. PubMed ID: 6256348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Xanthine oxidase binding to glycosaminoglycans: kinetics and superoxide dismutase interactions of immobilized xanthine oxidase-heparin complexes.
    Radi R; Rubbo H; Bush K; Freeman BA
    Arch Biochem Biophys; 1997 Mar; 339(1):125-35. PubMed ID: 9056242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide dependent lipid peroxidation.
    Tien M; Svingen BA; Aust SD
    Fed Proc; 1981 Feb; 40(2):179-82. PubMed ID: 6257557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions.
    Radi RA; Rubbo H; Prodanov E
    Biochim Biophys Acta; 1989 Jan; 994(1):89-93. PubMed ID: 2535790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pentoxifylline. A hydroxyl radical scavenger.
    Freitas JP; Filipe PM
    Biol Trace Elem Res; 1995; 47(1-3):307-11. PubMed ID: 7779563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.