These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 18510103)

  • 61. Biophysical screening for the discovery of small-molecule ligands.
    Ciulli A
    Methods Mol Biol; 2013; 1008():357-88. PubMed ID: 23729259
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Using DNA-encoded libraries of fragments for hit discovery of challenging therapeutic targets.
    Zhao G; Zhu M; Li Y; Zhang G; Li Y
    Expert Opin Drug Discov; 2024 Jun; 19(6):725-740. PubMed ID: 38753553
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rapid Elaboration of Fragments into Leads by X-ray Crystallographic Screening of Parallel Chemical Libraries (REFiL
    Bentley MR; Ilyichova OV; Wang G; Williams ML; Sharma G; Alwan WS; Whitehouse RL; Mohanty B; Scammells PJ; Heras B; Martin JL; Totsika M; Capuano B; Doak BC; Scanlon MJ
    J Med Chem; 2020 Jul; 63(13):6863-6875. PubMed ID: 32529824
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fragment-to-Lead Medicinal Chemistry Publications in 2020.
    de Esch IJP; Erlanson DA; Jahnke W; Johnson CN; Walsh L
    J Med Chem; 2022 Jan; 65(1):84-99. PubMed ID: 34928151
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Novel prostaglandin D synthase inhibitors generated by fragment-based drug design.
    Hohwy M; Spadola L; Lundquist B; Hawtin P; Dahmén J; Groth-Clausen I; Nilsson E; Persdotter S; von Wachenfeldt K; Folmer RH; Edman K
    J Med Chem; 2008 Apr; 51(7):2178-86. PubMed ID: 18341273
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Contributions of computational chemistry and biophysical techniques to fragment-based drug discovery.
    Gozalbes R; Carbajo RJ; Pineda-Lucena A
    Curr Med Chem; 2010; 17(17):1769-94. PubMed ID: 20345344
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Development of potent inhibitors by fragment-linking strategies.
    Bedwell EV; McCarthy WJ; Coyne AG; Abell C
    Chem Biol Drug Des; 2022 Oct; 100(4):469-486. PubMed ID: 35854428
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fragment screening and HIV therapeutics.
    Bauman JD; Patel D; Arnold E
    Top Curr Chem; 2012; 317():181-200. PubMed ID: 21972022
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels.
    Hämäläinen MD; Zhukov A; Ivarsson M; Fex T; Gottfries J; Karlsson R; Björsne M
    J Biomol Screen; 2008 Mar; 13(3):202-9. PubMed ID: 18270366
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fragment-based lead discovery: leads by design.
    Carr RA; Congreve M; Murray CW; Rees DC
    Drug Discov Today; 2005 Jul; 10(14):987-92. PubMed ID: 16023057
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Small-Molecule Library Subset Screening as an Aid for Accelerating Lead Identification.
    Beresini MH; Liu Y; Dawes TD; Clark KR; Orren L; Schmidt S; Turincio R; Jones SW; Rodriguez RA; Thana P; Hascall D; Gross DP; Skelton NJ
    J Biomol Screen; 2014 Jun; 19(5):758-70. PubMed ID: 24518067
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fragment-based lead discovery and design.
    Joseph-McCarthy D; Campbell AJ; Kern G; Moustakas D
    J Chem Inf Model; 2014 Mar; 54(3):693-704. PubMed ID: 24490951
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery.
    Silvestre HL; Blundell TL; Abell C; Ciulli A
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12984-9. PubMed ID: 23872845
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics.
    Lau WF; Withka JM; Hepworth D; Magee TV; Du YJ; Bakken GA; Miller MD; Hendsch ZS; Thanabal V; Kolodziej SA; Xing L; Hu Q; Narasimhan LS; Love R; Charlton ME; Hughes S; van Hoorn WP; Mills JE
    J Comput Aided Mol Des; 2011 Jul; 25(7):621-36. PubMed ID: 21604056
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Applied Biophysical Methods in Fragment-Based Drug Discovery.
    Coyle J; Walser R
    SLAS Discov; 2020 Jun; 25(5):471-490. PubMed ID: 32345095
    [TBL] [Abstract][Full Text] [Related]  

  • 76. HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery.
    Wu B; Zhang Z; Noberini R; Barile E; Giulianotti M; Pinilla C; Houghten RA; Pasquale EB; Pellecchia M
    Chem Biol; 2013 Jan; 20(1):19-33. PubMed ID: 23352136
    [TBL] [Abstract][Full Text] [Related]  

  • 77. From experimental design to validated hits a comprehensive walk-through of fragment lead identification using surface plasmon resonance.
    Giannetti AM
    Methods Enzymol; 2011; 493():169-218. PubMed ID: 21371592
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Computational discovery of picomolar Q(o) site inhibitors of cytochrome bc1 complex.
    Hao GF; Wang F; Li H; Zhu XL; Yang WC; Huang LS; Wu JW; Berry EA; Yang GF
    J Am Chem Soc; 2012 Jul; 134(27):11168-76. PubMed ID: 22690928
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.
    Bradley AR; Echalier A; Fairhead M; Strain-Damerell C; Brennan P; Bullock AN; Burgess-Brown NA; Carpenter EP; Gileadi O; Marsden BD; Lee WH; Yue W; Bountra C; von Delft F
    Essays Biochem; 2017 Nov; 61(5):495-503. PubMed ID: 29118096
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries.
    Franzini RM; Neri D; Scheuermann J
    Acc Chem Res; 2014 Apr; 47(4):1247-55. PubMed ID: 24673190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.