BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18510506)

  • 1. The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds.
    Hall MI
    J Anat; 2008 Jun; 212(6):781-94. PubMed ID: 18510506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between the lizard eye and associated bony features: a cautionary note for interpreting fossil activity patterns.
    Hall MI
    Anat Rec (Hoboken); 2009 Jun; 292(6):798-812. PubMed ID: 19462447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optic foramen morphology and activity pattern in birds.
    Hall MI; Iwaniuk AN; Gutiérrez-Ibáñez C
    Anat Rec (Hoboken); 2009 Nov; 292(11):1827-45. PubMed ID: 19777569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteological evidence for the evolution of activity pattern and visual acuity in primates.
    Kay RF; Kirk EC
    Am J Phys Anthropol; 2000 Oct; 113(2):235-62. PubMed ID: 11002207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology.
    Schmitz L; Motani R
    Science; 2011 May; 332(6030):705-8. PubMed ID: 21493820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do Bony Orbit Dimensions Predict Diel Activity Pattern in Sciurid Rodents?
    Smith SM; Angielczyk KD; Schmitz L; Wang SC
    Anat Rec (Hoboken); 2018 Oct; 301(10):1774-1787. PubMed ID: 30369077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of the size and shape of the lizard eye.
    Hall MI
    Zoology (Jena); 2008; 111(1):62-75. PubMed ID: 18054216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nocturnal bottleneck and the evolution of mammalian vision.
    Heesy CP; Hall MI
    Brain Behav Evol; 2010; 75(3):195-203. PubMed ID: 20733295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of activity pattern on eye size and orbital aperture size in primates.
    Kirk EC
    J Hum Evol; 2006 Aug; 51(2):159-70. PubMed ID: 16620912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sclerotic ring of squamates: an evo-devo-eco perspective.
    Atkins JB; Franz-Odendaal TA
    J Anat; 2016 Oct; 229(4):503-13. PubMed ID: 27240556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye shape and the nocturnal bottleneck of mammals.
    Hall MI; Kamilar JM; Kirk EC
    Proc Biol Sci; 2012 Dec; 279(1749):4962-8. PubMed ID: 23097513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between hard and soft tissue structures of the eye in extant lizards.
    Yamashita M; Tsuihiji T
    J Morphol; 2022 Sep; 283(9):1182-1199. PubMed ID: 35833614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye size variation reflects habitat and daily activity patterns in colubrid snakes.
    Liu Y; Ding L; Lei J; Zhao E; Tang Y
    J Morphol; 2012 Aug; 273(8):883-93. PubMed ID: 22549850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.
    Kurochkin EN; Dyke GJ; Saveliev SV; Pervushov EM; Popov EV
    Biol Lett; 2007 Jun; 3(3):309-13. PubMed ID: 17426009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative estimates of visual performance features in fossil birds.
    Schmitz L
    J Morphol; 2009 Jun; 270(6):759-73. PubMed ID: 19123246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extant-only comparative methods fail to recover the disparity preserved in the bird fossil record.
    Mitchell JS
    Evolution; 2015 Sep; 69(9):2414-24. PubMed ID: 26257156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bird evolution in the Eocene: climate change in Europe and a Danish fossil fauna.
    Lindow BE; Dyke GJ
    Biol Rev Camb Philos Soc; 2006 Nov; 81(4):483-99. PubMed ID: 16893476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of eye size and shape in primates.
    Ross CF; Kirk EC
    J Hum Evol; 2007 Mar; 52(3):294-313. PubMed ID: 17156820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical specializations for nocturnality in a critically endangered parrot, the Kakapo (Strigops habroptilus).
    Corfield JR; Gsell AC; Brunton D; Heesy CP; Hall MI; Acosta ML; Iwaniuk AN
    PLoS One; 2011; 6(8):e22945. PubMed ID: 21860663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes).
    Salazar JE; Severin D; Vega-Zuniga T; Fernández-Aburto P; Deichler A; Sallaberry A M; Mpodozis J
    Brain Behav Evol; 2019; 94(1-4):27-36. PubMed ID: 31751995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.