These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 18510577)
1. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Shrawat AK; Carroll RT; DePauw M; Taylor GJ; Good AG Plant Biotechnol J; 2008 Sep; 6(7):722-32. PubMed ID: 18510577 [TBL] [Abstract][Full Text] [Related]
3. Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Bi YM; Kant S; Clarke J; Gidda S; Ming F; Xu J; Rochon A; Shelp BJ; Hao L; Zhao R; Mullen RT; Zhu T; Rothstein SJ Plant Cell Environ; 2009 Dec; 32(12):1749-60. PubMed ID: 19682292 [TBL] [Abstract][Full Text] [Related]
4. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Tripathi RD; Dwivedi S; Shukla MK; Mishra S; Srivastava S; Singh R; Rai UN; Gupta DK Chemosphere; 2008 Feb; 70(10):1919-29. PubMed ID: 17854856 [TBL] [Abstract][Full Text] [Related]
5. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil. Delhaize E; Taylor P; Hocking PJ; Simpson RJ; Ryan PR; Richardson AE Plant Biotechnol J; 2009 Jun; 7(5):391-400. PubMed ID: 19490502 [TBL] [Abstract][Full Text] [Related]
6. Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Mitsuda N; Hiratsu K; Todaka D; Nakashima K; Yamaguchi-Shinozaki K; Ohme-Takagi M Plant Biotechnol J; 2006 May; 4(3):325-32. PubMed ID: 17147638 [TBL] [Abstract][Full Text] [Related]
7. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Peleg Z; Reguera M; Tumimbang E; Walia H; Blumwald E Plant Biotechnol J; 2011 Sep; 9(7):747-58. PubMed ID: 21284800 [TBL] [Abstract][Full Text] [Related]
8. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Kurai T; Wakayama M; Abiko T; Yanagisawa S; Aoki N; Ohsugi R Plant Biotechnol J; 2011 Oct; 9(8):826-37. PubMed ID: 21624033 [TBL] [Abstract][Full Text] [Related]
9. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Takahashi M; Nakanishi H; Kawasaki S; Nishizawa NK; Mori S Nat Biotechnol; 2001 May; 19(5):466-9. PubMed ID: 11329018 [TBL] [Abstract][Full Text] [Related]
10. Spatial and temporal expression of endosperm transfer cell-specific promoters in transgenic rice and barley. Li M; Singh R; Bazanova N; Milligan AS; Shirley N; Langridge P; Lopato S Plant Biotechnol J; 2008 Jun; 6(5):465-76. PubMed ID: 18422887 [TBL] [Abstract][Full Text] [Related]
11. Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Usuda K; Wada Y; Ishimaru Y; Kobayashi T; Takahashi M; Nakanishi H; Nagato Y; Mori S; Nishizawa NK Plant Biotechnol J; 2009 Jan; 7(1):87-95. PubMed ID: 18823453 [TBL] [Abstract][Full Text] [Related]
12. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. McAllister CH; Good AG PLoS One; 2015; 10(4):e0121830. PubMed ID: 25830496 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Ishimaru Y; Masuda H; Suzuki M; Bashir K; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Exp Bot; 2007; 58(11):2909-15. PubMed ID: 17630290 [TBL] [Abstract][Full Text] [Related]
14. Silencing of the aleurone-specific Ltp2-gus gene in transgenic rice is reversed by transgene rearrangements and loss of aberrant transcripts. Morino K; Olsen OA; Shimamoto K Plant Cell Physiol; 2004 Oct; 45(10):1500-8. PubMed ID: 15564533 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels. Hakeem KR; Chandna R; Ahmad A; Qureshi MI; Iqbal M Appl Biochem Biotechnol; 2012 Oct; 168(4):834-50. PubMed ID: 22903322 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a histidine- and alanine-rich protein showing interaction with calreticulin in rice. Komatsu S; Jan A; Koga Y Amino Acids; 2009 Jan; 36(1):137-46. PubMed ID: 18283411 [TBL] [Abstract][Full Text] [Related]
17. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase. Peña PA; Quach T; Sato S; Ge Z; Nersesian N; Dweikat IM; Soundararajan M; Clemente T Planta; 2017 Dec; 246(6):1097-1107. PubMed ID: 28801748 [TBL] [Abstract][Full Text] [Related]
18. [Isolation and analysis of a high expression promoter in rice]. Zhong XL; Zhang C; Cui YL; Shen YJ; Zhang YM; Yang ZN Sheng Wu Gong Cheng Xue Bao; 2007 Sep; 23(5):836-40. PubMed ID: 18051861 [TBL] [Abstract][Full Text] [Related]
19. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Ai P; Sun S; Zhao J; Fan X; Xin W; Guo Q; Yu L; Shen Q; Wu P; Miller AJ; Xu G Plant J; 2009 Mar; 57(5):798-809. PubMed ID: 18980647 [TBL] [Abstract][Full Text] [Related]
20. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Li D; Wang L; Wang M; Xu YY; Luo W; Liu YJ; Xu ZH; Li J; Chong K Plant Biotechnol J; 2009 Oct; 7(8):791-806. PubMed ID: 19754838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]