BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 1851086)

  • 1. Disassembly of in vitro formed lamin head-to-tail polymers by CDC2 kinase.
    Peter M; Heitlinger E; Häner M; Aebi U; Nigg EA
    EMBO J; 1991 Jun; 10(6):1535-44. PubMed ID: 1851086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of chicken lamin B2 in Escherichia coli: characterization of its structure, assembly, and molecular interactions.
    Heitlinger E; Peter M; Häner M; Lustig A; Aebi U; Nigg EA
    J Cell Biol; 1991 May; 113(3):485-95. PubMed ID: 2016332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase.
    Peter M; Nakagawa J; Dorée M; Labbé JC; Nigg EA
    Cell; 1990 May; 61(4):591-602. PubMed ID: 2188731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p34cdc2 acts as a lamin kinase in fission yeast.
    Enoch T; Peter M; Nurse P; Nigg EA
    J Cell Biol; 1991 Mar; 112(5):797-807. PubMed ID: 1999458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the head and tail domain in lamin structure and assembly: analysis of bacterially expressed chicken lamin A and truncated B2 lamins.
    Heitlinger E; Peter M; Lustig A; Villiger W; Nigg EA; Aebi U
    J Struct Biol; 1992; 108(1):74-89. PubMed ID: 1562436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The last twenty residues in the head domain of mouse lamin A contain important structural elements for formation of head-to-tail polymers in vitro.
    Isobe K; Gohara R; Ueda T; Takasaki Y; Ando S
    Biosci Biotechnol Biochem; 2007 May; 71(5):1252-9. PubMed ID: 17485847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of novel phosphorylation sites in murine A-type lamins.
    Eggert M; Radomski N; Linder D; Tripier D; Traub P; Jost E
    Eur J Biochem; 1993 Apr; 213(2):659-71. PubMed ID: 8477740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermediate filament protein polymerization: molecular analysis of Drosophila nuclear lamin head-to-tail binding.
    Stuurman N; Sasse B; Fisher PA
    J Struct Biol; 1996; 117(1):1-15. PubMed ID: 8776884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation on protein kinase C sites inhibits nuclear import of lamin B2.
    Hennekes H; Peter M; Weber K; Nigg EA
    J Cell Biol; 1993 Mar; 120(6):1293-304. PubMed ID: 8449977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitogen-activated protein kinases phosphorylate nuclear lamins and display sequence specificity overlapping that of mitotic protein kinase p34cdc2.
    Peter M; Sanghera JS; Pelech SL; Nigg EA
    Eur J Biochem; 1992 Apr; 205(1):287-94. PubMed ID: 1555589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for the p34cdc2 kinase and phosphatases in the regulation of phosphorylation and disassembly of lamin B2 during the cell cycle.
    Lüscher B; Brizuela L; Beach D; Eisenman RN
    EMBO J; 1991 Apr; 10(4):865-75. PubMed ID: 1849074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis.
    Heald R; McKeon F
    Cell; 1990 May; 61(4):579-89. PubMed ID: 2344612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lamin B receptor of the inner nuclear membrane undergoes mitosis-specific phosphorylation and is a substrate for p34cdc2-type protein kinase.
    Courvalin JC; Segil N; Blobel G; Worman HJ
    J Biol Chem; 1992 Sep; 267(27):19035-8. PubMed ID: 1326541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of nuclear beta II protein kinase C as a mitotic lamin kinase.
    Goss VL; Hocevar BA; Thompson LJ; Stratton CA; Burns DJ; Fields AP
    J Biol Chem; 1994 Jul; 269(29):19074-80. PubMed ID: 8034666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of the p34(cdc2) target site on goldfish germinal vesicle lamin B3 before oocyte maturation.
    Yamaguchi A; Katsu Y; Matsuyama M; Yoshikuni M; Nagahama Y
    Eur J Cell Biol; 2006 Jun; 85(6):501-17. PubMed ID: 16600424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of protein phosphatase 1 as a mitotic lamin phosphatase.
    Thompson LJ; Bollen M; Fields AP
    J Biol Chem; 1997 Nov; 272(47):29693-7. PubMed ID: 9368037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a conserved phosphorylation site modulating nuclear lamin polymerization.
    Stuurman N
    FEBS Lett; 1997 Jan; 401(2-3):171-4. PubMed ID: 9013881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of phosphorylation sites in human lamin A controlling lamin disassembly, nuclear transport and assembly.
    Haas M; Jost E
    Eur J Cell Biol; 1993 Dec; 62(2):237-47. PubMed ID: 7925482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of protein kinase C (PKC) phosphorylation sites on human lamin B. Potential role of PKC in nuclear lamina structural dynamics.
    Hocevar BA; Burns DJ; Fields AP
    J Biol Chem; 1993 Apr; 268(10):7545-52. PubMed ID: 8463284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclin-dependent kinase 1 depolymerizes nuclear lamin filaments by disrupting the head-to-tail interaction of the lamin central rod domain.
    Jeong S; Ahn J; Jo I; Kang SM; Park BJ; Cho HS; Kim YH; Ha NC
    J Biol Chem; 2022 Sep; 298(9):102256. PubMed ID: 35839855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.