BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18510939)

  • 41. p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal.
    Batista LF; Roos WP; Kaina B; Menck CF
    Mol Cancer Res; 2009 Feb; 7(2):237-46. PubMed ID: 19208740
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris.
    Park SE; Yoo HS; Jin CY; Hong SH; Lee YW; Kim BW; Lee SH; Kim WJ; Cho CK; Choi YH
    Food Chem Toxicol; 2009 Jul; 47(7):1667-75. PubMed ID: 19393284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human bladder cancer cells undergo cisplatin-induced apoptosis that is associated with p53-dependent and p53-independent responses.
    Konstantakou EG; Voutsinas GE; Karkoulis PK; Aravantinos G; Margaritis LH; Stravopodis DJ
    Int J Oncol; 2009 Aug; 35(2):401-16. PubMed ID: 19578756
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Propofol protects hepatic L02 cells from hydrogen peroxide-induced apoptosis via activation of extracellular signal-regulated kinases pathway.
    Wang H; Xue Z; Wang Q; Feng X; Shen Z
    Anesth Analg; 2008 Aug; 107(2):534-40. PubMed ID: 18633031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expression of E1AF, an ets-family transcription factor, is correlated with the invasive phenotype of oral squamous cell carcinoma.
    Hida K; Shindoh M; Yoshida K; Kudoh A; Furaoka K; Kohgo T; Fujinaga K; Totsuka Y
    Oral Oncol; 1997 Nov; 33(6):426-30. PubMed ID: 9509127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy.
    Albertini V; Jain A; Vignati S; Napoli S; Rinaldi A; Kwee I; Nur-e-Alam M; Bergant J; Bertoni F; Carbone GM; Rohr J; Catapano CV
    Nucleic Acids Res; 2006; 34(6):1721-34. PubMed ID: 16571899
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel mithramycins abrogate the involvement of protein factors in the transcription of cell cycle control genes.
    Vizcaíno C; Mansilla S; Núñez LE; Méndez C; Salas JA; Morís F; Portugal J
    Biochem Pharmacol; 2012 Nov; 84(9):1133-42. PubMed ID: 22981341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mithramycin inhibits etoposide resistance in glucose-deprived HT-29 human colon carcinoma cells.
    Lee EM; Park HR; Hwang JH; Park DJ; Chang KS; Kim CJ
    J Microbiol Biotechnol; 2007 Nov; 17(11):1856-61. PubMed ID: 18092471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential inhibition of restriction enzyme cleavage by chromophore-modified analogues of the antitumour antibiotics mithramycin and chromomycin reveals structure-activity relationships.
    Mansilla S; Garcia-Ferrer I; Méndez C; Salas JA; Portugal J
    Biochem Pharmacol; 2010 May; 79(10):1418-27. PubMed ID: 20093108
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mithramycin inhibits human epithelial carcinoma cell proliferation and migration involving downregulation of Eps8 expression.
    Yang TP; Chiou HL; Maa MC; Wang CJ
    Chem Biol Interact; 2010 Jan; 183(1):181-6. PubMed ID: 19799886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elevated beta1,4-galactosyltransferase I in highly metastatic human lung cancer cells. Identification of E1AF as important transcription activator.
    Zhu X; Jiang J; Shen H; Wang H; Zong H; Li Z; Yang Y; Niu Z; Liu W; Chen X; Hu Y; Gu J
    J Biol Chem; 2005 Apr; 280(13):12503-16. PubMed ID: 15611127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EPS8 inhibition increases cisplatin sensitivity in lung cancer cells.
    Gorsic LK; Stark AL; Wheeler HE; Wong SS; Im HK; Dolan ME
    PLoS One; 2013; 8(12):e82220. PubMed ID: 24367505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro inhibition of c-myc transcription by mithramycin.
    Hardenbol P; Van Dyke MW
    Biochem Biophys Res Commun; 1992 Jun; 185(2):553-8. PubMed ID: 1535193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis, and novel derivatives.
    Lombó F; Menéndez N; Salas JA; Méndez C
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):1-14. PubMed ID: 17013601
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semi-synthetic mithramycin SA derivatives with improved anticancer activity.
    Scott D; Chen JM; Bae Y; Rohr J
    Chem Biol Drug Des; 2013 May; 81(5):615-24. PubMed ID: 23331575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Insight into mithramycin disruption of ETS transcription leads to improved understanding of more selective analogs.
    Woldemichael GM; O'Keefe BR
    Structure; 2021 May; 29(5):401-403. PubMed ID: 33961789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of Mg++ in the mithramycin-DNA interaction: evidence for two types of mithramycin-Mg++ complex.
    Aich P; Dasgupta D
    Biochem Biophys Res Commun; 1990 Dec; 173(2):689-96. PubMed ID: 2148084
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced Glucose Requirement in Human Hepatoma-derived HuH-7 Cells by Forced Expression of the bcl-2 Gene.
    Okamoto K; Muraguchi T; Shidoji Y
    J Clin Biochem Nutr; 2008 Sep; 43(2):101-8. PubMed ID: 18818743
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Global gene expression profiling data analysis reveals key gene families and biological processes inhibited by Mithramycin in sarcoma cell lines.
    Kulkarni KK; Bankar KG; Shukla RN; Das C; Banerjee A; Dasgupta D; Vasudevan M
    Genom Data; 2015 Mar; 3():8-14. PubMed ID: 26484141
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.