These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 18510972)
21. A novel 96-kDa aminopeptidase localized on epithelial cell membranes of Bombyx mori midgut, which binds to Cry1Ac toxin of Bacillus thuringiensis. Shitomi Y; Hayakawa T; Hossain DM; Higuchi M; Miyamoto K; Nakanishi K; Sato R; Hori H J Biochem; 2006 Feb; 139(2):223-33. PubMed ID: 16452310 [TBL] [Abstract][Full Text] [Related]
22. In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae. Saengwiman S; Aroonkesorn A; Dedvisitsakul P; Sakdee S; Leetachewa S; Angsuthanasombat C; Pootanakit K Biochem Biophys Res Commun; 2011 Apr; 407(4):708-13. PubMed ID: 21439264 [TBL] [Abstract][Full Text] [Related]
23. Characterization and regulation of Bacillus thuringiensis Cry toxin binding aminopeptidases N (APNs) from non-gut visceral tissues, Malpighian tubule and salivary gland: Comparison with midgut-specific APN in the moth Achaea janata. Ningshen TJ; Chaitanya RK; Hari PP; Vimala Devi PS; Dutta-Gupta A Comp Biochem Physiol B Biochem Mol Biol; 2013; 166(3-4):194-202. PubMed ID: 24045122 [TBL] [Abstract][Full Text] [Related]
24. Compatibility of garlic (Allium sativum L.) leaf agglutinin and Cry1Ac δ-endotoxin for gene pyramiding. Upadhyay SK; Singh S; Chandrashekar K; Tuli R; Singh PK Appl Microbiol Biotechnol; 2012 Mar; 93(6):2365-75. PubMed ID: 21870043 [TBL] [Abstract][Full Text] [Related]
25. Molecular cloning of a GPI-anchored aminopeptidase N from Bombyx mori midgut: a putative receptor for Bacillus thuringiensis CryIA toxin. Hua G; Tsukamoto K; Rasilo ML; Ikezawa H Gene; 1998 Jul; 214(1-2):177-85. PubMed ID: 9729121 [TBL] [Abstract][Full Text] [Related]
26. Functional roles of cadherin, aminopeptidase-N and alkaline phosphatase from Helicoverpa armigera (Hübner) in the action mechanism of Bacillus thuringiensis Cry2Aa. Zhao M; Yuan X; Wei J; Zhang W; Wang B; Myint Khaing M; Liang G Sci Rep; 2017 May; 7():46555. PubMed ID: 28488696 [TBL] [Abstract][Full Text] [Related]
27. Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dissociated epithelial cells from Bombyx mori. Ibiza-Palacios MS; Ferré J; Higurashi S; Miyamoto K; Sato R; Escriche B Biochem J; 2008 Jan; 409(1):215-21. PubMed ID: 17725543 [TBL] [Abstract][Full Text] [Related]
28. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
29. Removal of an Aminopeptidase N From Midgut Brush Border Does Not Affect Susceptibility of Spodoptera litura (Lepidoptera: Noctuidae) Larvae to Four Insecticidal Proteins of Bacillus thuringiensis (Bacillales: Bacillaceae). Wang C; Deng Z; Yuan J; Xu K; Sha L; Guan X; Huang Z; Shao E J Econ Entomol; 2023 Feb; 116(1):223-232. PubMed ID: 36421056 [TBL] [Abstract][Full Text] [Related]
31. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Zhang S; Cheng H; Gao Y; Wang G; Liang G; Wu K Insect Biochem Mol Biol; 2009 Jul; 39(7):421-9. PubMed ID: 19376227 [TBL] [Abstract][Full Text] [Related]
32. A high-throughput, in-vitro assay for Bacillus thuringiensis insecticidal proteins. Izumi Willcoxon M; Dennis JR; Lau SI; Xie W; You Y; Leng S; Fong RC; Yamamoto T J Biotechnol; 2016 Jan; 217():72-81. PubMed ID: 26524384 [TBL] [Abstract][Full Text] [Related]
33. Aminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin. Lee MK; You TH; Young BA; Cotrill JA; Valaitis AP; Dean DH Appl Environ Microbiol; 1996 Aug; 62(8):2845-9. PubMed ID: 8702277 [TBL] [Abstract][Full Text] [Related]
35. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
36. Toxicity of Cry1A toxins from Bacillus thuringiensis to CF1 cells does not involve activation of adenylate cyclase/PKA signaling pathway. Portugal L; Muñóz-Garay C; Martínez de Castro DL; Soberón M; Bravo A Insect Biochem Mol Biol; 2017 Jan; 80():21-31. PubMed ID: 27867074 [TBL] [Abstract][Full Text] [Related]
37. Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor. Jenkins JL; Lee MK; Valaitis AP; Curtiss A; Dean DH J Biol Chem; 2000 May; 275(19):14423-31. PubMed ID: 10799525 [TBL] [Abstract][Full Text] [Related]
38. The interactions between soybean trypsin inhibitor and delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera larva. Zhang JH; Wang CZ; Qin JD J Invertebr Pathol; 2000 May; 75(4):259-66. PubMed ID: 10843832 [TBL] [Abstract][Full Text] [Related]
39. Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells. Freedman SD; Kern HF; Scheele GA Eur J Cell Biol; 1998 Feb; 75(2):163-73. PubMed ID: 9548373 [TBL] [Abstract][Full Text] [Related]
40. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Cancino-Rodezno A; Alexander C; Villaseñor R; Pacheco S; Porta H; Pauchet Y; Soberón M; Gill SS; Bravo A Insect Biochem Mol Biol; 2010 Jan; 40(1):58-63. PubMed ID: 20040372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]