BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 18511075)

  • 1. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
    Standfuss J; Zaitseva E; Mahalingam M; Vogel R
    J Mol Biol; 2008 Jun; 380(1):145-57. PubMed ID: 18511075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Glu181 in the photoactivation of rhodopsin.
    Lüdeke S; Beck M; Yan EC; Sakmar TP; Siebert F; Vogel R
    J Mol Biol; 2005 Oct; 353(2):345-56. PubMed ID: 16169009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mutant rhodopsin photoproduct with a protonated Schiff base displays an active-state conformation: a Fourier-transform infrared spectroscopy study.
    Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1994 Nov; 33(46):13700-5. PubMed ID: 7947779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water and peptide backbone structure in the active center of bovine rhodopsin.
    Nagata T; Terakita A; Kandori H; Kojima D; Shichida Y; Maeda A
    Biochemistry; 1997 May; 36(20):6164-70. PubMed ID: 9166788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of glutamic acid 113 as the Schiff base proton acceptor in the metarhodopsin II photointermediate of rhodopsin.
    Jäger F; Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 1994 Sep; 33(36):10878-82. PubMed ID: 7916209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein.
    Xie P; Zhou P; Alsaedi A; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():25-31. PubMed ID: 27865136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two protonation switches control rhodopsin activation in membranes.
    Mahalingam M; Martínez-Mayorga K; Brown MF; Vogel R
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17795-800. PubMed ID: 18997017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist.
    Mahalingam M; Vogel R
    Biochemistry; 2006 Dec; 45(51):15624-32. PubMed ID: 17176084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of rhodopsin congenital night blindness mutant T94I.
    Gross AK; Rao VR; Oprian DD
    Biochemistry; 2003 Feb; 42(7):2009-15. PubMed ID: 12590588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA
    Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal counterion switch mechanism in vision evaluated by molecular simulations.
    Martínez-Mayorga K; Pitman MC; Grossfield A; Feller SE; Brown MF
    J Am Chem Soc; 2006 Dec; 128(51):16502-3. PubMed ID: 17177390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.