BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18511416)

  • 1. Acetylcholinesterase associates differently with its anchoring proteins ColQ and PRiMA.
    Noureddine H; Carvalho S; Schmitt C; Massoulié J; Bon S
    J Biol Chem; 2008 Jul; 283(30):20722-32. PubMed ID: 18511416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of acetylcholinesterase tetramers by peptidic motifs from the proline-rich membrane anchor, PRiMA: competition between degradation and secretion pathways of heteromeric complexes.
    Noureddine H; Schmitt C; Liu W; Garbay C; Massoulié J; Bon S
    J Biol Chem; 2007 Feb; 282(6):3487-97. PubMed ID: 17158452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin of the molecular diversity and functional anchoring of cholinesterases.
    Massoulié J
    Neurosignals; 2002; 11(3):130-43. PubMed ID: 12138250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PRiMA: the membrane anchor of acetylcholinesterase in the brain.
    Perrier AL; Massoulié J; Krejci E
    Neuron; 2002 Jan; 33(2):275-85. PubMed ID: 11804574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tetrameric acetylcholinesterase from the parasitic nematode Dictyocaulus viviparus associates with the vertebrate tail proteins PRiMA and ColQ.
    Pezzementi L; Krejci E; Chatonnet A; Selkirk ME; Matthews JB
    Mol Biochem Parasitol; 2012 Jan; 181(1):40-8. PubMed ID: 22027027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain.
    Chen VP; Xie HQ; Chan WKB; Leung KW; Chan GKL; Choi RCY; Bon S; Massoulié J; Tsim KWK
    J Biol Chem; 2010 Aug; 285(35):27265-27278. PubMed ID: 20566626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cholinesterases: anchored enzymes in membranes and basal laminae].
    Krejci E
    J Soc Biol; 2005; 199(1):55-60. PubMed ID: 16114264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elements of the C-terminal t peptide of acetylcholinesterase that determine amphiphilicity, homomeric and heteromeric associations, secretion and degradation.
    Belbeoc'h S; Falasca C; Leroy J; Ayon A; Massoulié J; Bon S
    Eur J Biochem; 2004 Apr; 271(8):1476-87. PubMed ID: 15066173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons.
    Xie HQ; Liang D; Leung KW; Chen VP; Zhu KY; Chan WK; Choi RC; Massoulié J; Tsim KW
    J Biol Chem; 2010 Apr; 285(15):11537-46. PubMed ID: 20147288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-linked glycosylation of proline-rich membrane anchor (PRiMA) is not required for assembly and trafficking of globular tetrameric acetylcholinesterase.
    Chan WK; Chen VP; Luk WK; Choi RC; Tsim KW
    Neurosci Lett; 2012 Aug; 523(1):71-5. PubMed ID: 22750213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimerization domain of the collagen tail of acetylcholinesterase.
    Bon S; Ayon A; Leroy J; Massoulié J
    Neurochem Res; 2003 Apr; 28(3-4):523-35. PubMed ID: 12675141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J; Bon S; Perrier N; Falasca C
    Chem Biol Interact; 2005 Dec; 157-158():3-14. PubMed ID: 16257397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional control of different acetylcholinesterase subunits in formation and maintenance of vertebrate neuromuscular junctions.
    Tsim KW; Xie HQ; Ting AK; Siow NL; Ling KK; Kong LW
    J Mol Neurosci; 2006; 30(1-2):189-92. PubMed ID: 17192673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRiMA directs a restricted localization of tetrameric AChE at synapses.
    Xie HQ; Leung KW; Chen VP; Chan GK; Xu SL; Guo AJ; Zhu KY; Zheng KY; Bi CW; Zhan JY; Chan WK; Choi RC; Tsim KW
    Chem Biol Interact; 2010 Sep; 187(1-3):78-83. PubMed ID: 20178777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis.
    Zhang D; McCammon JA
    PLoS Comput Biol; 2005 Nov; 1(6):e62. PubMed ID: 16299589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail.
    Bon S; Coussen F; Massoulié J
    J Biol Chem; 1997 Jan; 272(5):3016-21. PubMed ID: 9006950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix.
    Dvir H; Harel M; Bon S; Liu WQ; Vidal M; Garbay C; Sussman JL; Massoulié J; Silman I
    EMBO J; 2004 Nov; 23(22):4394-405. PubMed ID: 15526038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization.
    Massoulié J; Anselmet A; Bon S; Krejci E; Legay C; Morel N; Simon S
    J Physiol Paris; 1998; 92(3-4):183-90. PubMed ID: 9789805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the C-terminal domain of ColQ in endplate acetylcholinesterase deficiency compromise ColQ-MuSK interaction.
    Nakata T; Ito M; Azuma Y; Otsuka K; Noguchi Y; Komaki H; Okumura A; Shiraishi K; Masuda A; Natsume J; Kojima S; Ohno K
    Hum Mutat; 2013 Jul; 34(7):997-1004. PubMed ID: 23553736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholinesterase H and T dimers are associated through the same contact. Mutations at this interface interfere with the C-terminal T peptide, inducing degradation rather than secretion.
    Morel N; Leroy J; Ayon A; Massoulié J; Bon S
    J Biol Chem; 2001 Oct; 276(40):37379-89. PubMed ID: 11443120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.