BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 18511906)

  • 1. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response.
    Zierhut C; Diffley JF
    EMBO J; 2008 Jul; 27(13):1875-85. PubMed ID: 18511906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling end resection with the checkpoint response at DNA double-strand breaks.
    Villa M; Cassani C; Gobbini E; Bonetti D; Longhese MP
    Cell Mol Life Sci; 2016 Oct; 73(19):3655-63. PubMed ID: 27141941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by double-strand break resection.
    Matsuzaki K; Terasawa M; Iwasaki D; Higashide M; Shinohara M
    Genes Cells; 2012 Jun; 17(6):473-93. PubMed ID: 22563681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
    Sasaki M; Kobayashi T
    Mol Cell; 2017 May; 66(4):533-545.e5. PubMed ID: 28525744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of repair pathway choice at two-ended DNA double-strand breaks.
    Shibata A
    Mutat Res; 2017 Oct; 803-805():51-55. PubMed ID: 28781144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDK targets Sae2 to control DNA-end resection and homologous recombination.
    Huertas P; Cortés-Ledesma F; Sartori AA; Aguilera A; Jackson SP
    Nature; 2008 Oct; 455(7213):689-92. PubMed ID: 18716619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for the DNA-PK complex and 53BP1 in protecting ends from resection during DNA double-strand break repair.
    Shibata A; Jeggo PA
    J Radiat Res; 2020 Sep; 61(5):718-726. PubMed ID: 32779701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax.
    Goodarzi AA; Jeggo P; Lobrich M
    DNA Repair (Amst); 2010 Dec; 9(12):1273-82. PubMed ID: 21036673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-strand break end resection and repair pathway choice.
    Symington LS; Gautier J
    Annu Rev Genet; 2011; 45():247-71. PubMed ID: 21910633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chromatin Landscape around DNA Double-Strand Breaks in Yeast and Its Influence on DNA Repair Pathway Choice.
    Frigerio C; Di Nisio E; Galli M; Colombo CV; Negri R; Clerici M
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of the cellular response to DNA double-strand breaks in G1.
    Barlow JH; Lisby M; Rothstein R
    Mol Cell; 2008 Apr; 30(1):73-85. PubMed ID: 18406328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae.
    Mathiasen DP; Lisby M
    FEMS Microbiol Rev; 2014 Mar; 38(2):172-84. PubMed ID: 24483249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining.
    Jessulat M; Malty RH; Nguyen-Tran DH; Deineko V; Aoki H; Vlasblom J; Omidi K; Jin K; Minic Z; Hooshyar M; Burnside D; Samanfar B; Phanse S; Freywald T; Prasad B; Zhang Z; Vizeacoumar F; Krogan NJ; Freywald A; Golshani A; Babu M
    Mol Cell Biol; 2015 Jul; 35(14):2448-63. PubMed ID: 25963654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive ssDNA end formation at DNA double-strand breaks in non-homologous end-joining deficient cells during the S phase.
    Karlsson KH; Stenerlöw B
    BMC Mol Biol; 2007 Oct; 8():97. PubMed ID: 17963495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks.
    Shibata A; Jeggo PA
    DNA Repair (Amst); 2020 Sep; 93():102915. PubMed ID: 33087281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the Mre11-Rad50-Nbs1 complex in double-strand break repair-facts and myths.
    Takeda S; Hoa NN; Sasanuma H
    J Radiat Res; 2016 Aug; 57 Suppl 1(Suppl 1):i25-i32. PubMed ID: 27311583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle-dependent control of homologous recombination.
    Zhao X; Wei C; Li J; Xing P; Li J; Zheng S; Chen X
    Acta Biochim Biophys Sin (Shanghai); 2017 Aug; 49(8):655-668. PubMed ID: 28541389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks.
    Sorenson KS; Mahaney BL; Lees-Miller SP; Cobb JA
    J Biol Chem; 2017 Sep; 292(35):14576-14586. PubMed ID: 28679532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline Denaturing Southern Blot Analysis to Monitor Double-Strand Break Processing.
    Colombo CV; Menin L; Clerici M
    Methods Mol Biol; 2018; 1672():131-145. PubMed ID: 29043622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.