BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 18512058)

  • 1. Production of hydroxy-fatty acid derivatives from waste oil by Escherichia coli cells producing fungal cytochrome P450foxy.
    Kitazume T; Yamazaki Y; Matsuyama S; Shoun H; Takaya N
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):981-8. PubMed ID: 18512058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of hydroxylation of saturated fatty acids by recombinant P450foxy produced by an Escherichia coli expression system.
    Kitazume T; Tanaka A; Takaya N; Nakamura A; Matsuyama S; Suzuki T; Shoun H
    Eur J Biochem; 2002 Apr; 269(8):2075-82. PubMed ID: 11985584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium.
    Sakai K; Matsuzaki F; Wise L; Sakai Y; Jindou S; Ichinose H; Takaya N; Kato M; Wariishi H; Shimizu M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30171007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae.
    Durairaj P; Malla S; Nadarajan SP; Lee PG; Jung E; Park HH; Kim BG; Yun H
    Microb Cell Fact; 2015 Apr; 14():45. PubMed ID: 25880760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique properties of purified, Escherichia coli-expressed constitutive cytochrome P4504A5.
    Hosny G; Roman LJ; Mostafa MH; Masters BS
    Arch Biochem Biophys; 1999 Jun; 366(2):199-206. PubMed ID: 10356284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids.
    Cryle MJ; Matovic NJ; De Voss JJ
    Org Lett; 2003 Sep; 5(18):3341-4. PubMed ID: 12943422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions.
    Dietrich M; Do TA; Schmid RD; Pleiss J; Urlacher VB
    J Biotechnol; 2009 Jan; 139(1):115-7. PubMed ID: 18984016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis.
    Budde M; Maurer SC; Schmid RD; Urlacher VB
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):180-6. PubMed ID: 15375636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotechnology for fats and oils: new oxygenated fatty acids.
    Hou CT
    N Biotechnol; 2009 Oct; 26(1-2):2-10. PubMed ID: 19447212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3.
    Kitazume T; Takaya N; Nakayama N; Shoun H
    J Biol Chem; 2000 Dec; 275(50):39734-40. PubMed ID: 10995755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum.
    Nakayama N; Takemae A; Shoun H
    J Biochem; 1996 Mar; 119(3):435-40. PubMed ID: 8830036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus.
    Chowdhary PK; Alemseghed M; Haines DC
    Arch Biochem Biophys; 2007 Dec; 468(1):32-43. PubMed ID: 17945181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the versatile monooxygenase CYP109B1 from Bacillus subtilis.
    Girhard M; Klaus T; Khatri Y; Bernhardt R; Urlacher VB
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):595-607. PubMed ID: 20186410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo.
    Kim J; Lee PG; Jung EO; Kim BG
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):60-67. PubMed ID: 28821467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positional specificity of rabbit CYP4B1 for omega-hydroxylation1 of short-medium chain fatty acids and hydrocarbons.
    Fisher MB; Zheng YM; Rettie AE
    Biochem Biophys Res Commun; 1998 Jul; 248(2):352-5. PubMed ID: 9675139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of Long-Chain ω-Hydroxy Fatty Acids by Engineered Saccharomyces cerevisiae.
    Liu J; Zhang C; Lu W
    J Agric Food Chem; 2019 Apr; 67(16):4545-4552. PubMed ID: 30929440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for In vivo application of cytochrome P-450BM-3 monooxygenase.
    Schneider S; Wubbolts MG; Sanglard D; Witholt B
    Appl Environ Microbiol; 1998 Oct; 64(10):3784-90. PubMed ID: 9758800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius.
    Bhattarai S; Liou K; Oh TJ
    Arch Biochem Biophys; 2013 Nov; 539(1):63-9. PubMed ID: 24055535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2015 Sep; 63(37):8199-208. PubMed ID: 26359801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea.
    Babot ED; del Río JC; Kalum L; Martínez AT; Gutiérrez A
    Biotechnol Bioeng; 2013 Sep; 110(9):2323-32. PubMed ID: 23519689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.