These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 18512260)
1. Comparison of microbial community composition and activity in sulfate-reducing batch systems remediating mine drainage. Pereyra LP; Hiibel SR; Pruden A; Reardon KF Biotechnol Bioeng; 2008 Nov; 101(4):702-13. PubMed ID: 18512260 [TBL] [Abstract][Full Text] [Related]
2. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water. Pruden A; Messner N; Pereyra L; Hanson RE; Hiibel SR; Reardon KF Water Res; 2007 Feb; 41(4):904-14. PubMed ID: 17222885 [TBL] [Abstract][Full Text] [Related]
3. Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Hiibel SR; Pereyra LP; Inman LY; Tischer A; Reisman DJ; Reardon KF; Pruden A Environ Microbiol; 2008 Aug; 10(8):2087-97. PubMed ID: 18430021 [TBL] [Abstract][Full Text] [Related]
4. Molecular assessment of the sensitivity of sulfate-reducing microbial communities remediating mine drainage to aerobic stress. Lefèvre E; Pereyra LP; Hiibel SR; Perrault EM; De Long SK; Reardon KF; Pruden A Water Res; 2013 Sep; 47(14):5316-25. PubMed ID: 23863381 [TBL] [Abstract][Full Text] [Related]
5. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Morales TA; Dopson M; Athar R; Herbert RB Biotechnol Bioeng; 2005 Jun; 90(5):543-51. PubMed ID: 15818559 [TBL] [Abstract][Full Text] [Related]
6. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage. Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004 [TBL] [Abstract][Full Text] [Related]
7. Effect of bioaugmentation and biostimulation on sulfate-reducing column startup captured by functional gene profiling. Pereyra LP; Hiibel SR; Perrault EM; Reardon KF; Pruden A FEMS Microbiol Ecol; 2012 Oct; 82(1):135-47. PubMed ID: 22587594 [TBL] [Abstract][Full Text] [Related]
8. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K; Auvinen H; Johnson DB Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880 [TBL] [Abstract][Full Text] [Related]
9. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. Kaksonen AH; Plumb JJ; Franzmann PD; Puhakka JA FEMS Microbiol Ecol; 2004 Mar; 47(3):279-89. PubMed ID: 19712316 [TBL] [Abstract][Full Text] [Related]
10. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA). Sousa DZ; Alves JI; Alves MM; Smidt H; Stams AJ Environ Microbiol; 2009 Jan; 11(1):68-80. PubMed ID: 18783383 [TBL] [Abstract][Full Text] [Related]
11. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Zhao Y; Ren N; Wang A Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751 [TBL] [Abstract][Full Text] [Related]
12. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Neculita CM; Zagury GJ; Bussière B J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207 [TBL] [Abstract][Full Text] [Related]
13. A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance. Alexandrino M; Macías F; Costa R; Gomes NC; Canário AV; Costa MC J Hazard Mater; 2011 Mar; 187(1-3):362-70. PubMed ID: 21296493 [TBL] [Abstract][Full Text] [Related]
14. Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Sánchez-Andrea I; Triana D; Sanz JL Water Sci Technol; 2012; 66(11):2425-31. PubMed ID: 23032774 [TBL] [Abstract][Full Text] [Related]
15. Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate. Chen C; Ren N; Wang A; Yu Z; Lee DJ Appl Microbiol Biotechnol; 2008 Jul; 79(6):1071-7. PubMed ID: 18483736 [TBL] [Abstract][Full Text] [Related]
16. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105 [TBL] [Abstract][Full Text] [Related]
17. Comparison of CE-SSCP and DGGE for monitoring a complex microbial community remediating mine drainage. Hong H; Pruden A; Reardon KF J Microbiol Methods; 2007 Apr; 69(1):52-64. PubMed ID: 17229479 [TBL] [Abstract][Full Text] [Related]
18. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Zagury GJ; Kulnieks VI; Neculita CM Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566 [TBL] [Abstract][Full Text] [Related]
19. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398 [TBL] [Abstract][Full Text] [Related]
20. Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site. Martins M; Faleiro ML; Chaves S; Tenreiro R; Costa MC Sci Total Environ; 2010 May; 408(12):2621-8. PubMed ID: 20334901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]