These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18512344)

  • 1. Host cell actin remodeling in response to Cryptosporidium.
    O'Hara SP; Small AJ; Chen XM; LaRusso NF
    Subcell Biochem; 2008; 47():92-100. PubMed ID: 18512344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphatidylinositol 3-kinase and frabin mediate Cryptosporidium parvum cellular invasion via activation of Cdc42.
    Chen XM; Splinter PL; Tietz PS; Huang BQ; Billadeau DD; LaRusso NF
    J Biol Chem; 2004 Jul; 279(30):31671-8. PubMed ID: 15133042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cdc42 and the actin-related protein/neural Wiskott-Aldrich syndrome protein network mediate cellular invasion by Cryptosporidium parvum.
    Chen XM; Huang BQ; Splinter PL; Orth JD; Billadeau DD; McNiven MA; LaRusso NF
    Infect Immun; 2004 May; 72(5):3011-21. PubMed ID: 15102814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src.
    Chen XM; Huang BQ; Splinter PL; Cao H; Zhu G; McNiven MA; LaRusso NF
    Gastroenterology; 2003 Jul; 125(1):216-28. PubMed ID: 12851885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptosporidium parvum infection requires host cell actin polymerization.
    Elliott DA; Coleman DJ; Lane MA; May RC; Machesky LM; Clark DP
    Infect Immun; 2001 Sep; 69(9):5940-2. PubMed ID: 11500478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptosporidium parvum induces host cell actin accumulation at the host-parasite interface.
    Elliott DA; Clark DP
    Infect Immun; 2000 Apr; 68(4):2315-22. PubMed ID: 10722635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization.
    O'Hara SP; Gajdos GB; Trussoni CE; Splinter PL; LaRusso NF
    Infect Immun; 2010 Jul; 78(7):2927-36. PubMed ID: 20457792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion.
    Chen XM; O'Hara SP; Huang BQ; Splinter PL; Nelson JB; LaRusso NF
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6338-43. PubMed ID: 15851691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptosporidium parvum infects human cholangiocytes via sphingolipid-enriched membrane microdomains.
    Nelson JB; O'Hara SP; Small AJ; Tietz PS; Choudhury AK; Pagano RE; Chen XM; LaRusso NF
    Cell Microbiol; 2006 Dec; 8(12):1932-45. PubMed ID: 16848787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion.
    Chen XM; O'Hara SP; Huang BQ; Nelson JB; Lin JJ; Zhu G; Ward HD; LaRusso NF
    Infect Immun; 2004 Dec; 72(12):6806-16. PubMed ID: 15557601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for host phosphoinositide 3-kinase and cytoskeletal remodeling during Cryptosporidium parvum infection.
    Forney JR; DeWald DB; Yang S; Speer CA; Healey MC
    Infect Immun; 1999 Feb; 67(2):844-52. PubMed ID: 9916099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptosporidium infections: molecular advances.
    Lendner M; Daugschies A
    Parasitology; 2014 Sep; 141(11):1511-32. PubMed ID: 24679517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach.
    Edwards H; Thompson RC; Koh WH; Clode PL
    Mol Cell Probes; 2012 Feb; 26(1):21-8. PubMed ID: 22100878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of host calpain in the invasion of Cryptosporidium parvum.
    Perez-Cordon G; Nie W; Schmidt D; Tzipori S; Feng H
    Microbes Infect; 2011 Jan; 13(1):103-7. PubMed ID: 21087681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells.
    Hashim A; Mulcahy G; Bourke B; Clyne M
    Infect Immun; 2006 Jan; 74(1):99-107. PubMed ID: 16368962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptosporidium parvum regulation of human epithelial cell gene expression.
    Deng M; Lancto CA; Abrahamsen MS
    Int J Parasitol; 2004 Jan; 34(1):73-82. PubMed ID: 14711592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The interrelationships of the coccidian Cryptosporidium parvum (Apicomplexa: Sporozoa) with the cells of the immune system in the mammalian host].
    Svezhova NV
    Parazitologiia; 1997; 31(4):328-33. PubMed ID: 9479380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of host cell integrin α2 in Cryptosporidium parvum infection.
    Zhang H; Guo F; Zhu G
    Infect Immun; 2012 May; 80(5):1753-8. PubMed ID: 22354032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host cell tropism underlies species restriction of human and bovine Cryptosporidium parvum genotypes.
    Hashim A; Clyne M; Mulcahy G; Akiyoshi D; Chalmers R; Bourke B
    Infect Immun; 2004 Oct; 72(10):6125-31. PubMed ID: 15385517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.