These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 18512447)
1. Formation characteristics of aerosol particles from pulverized coal pyrolysis in high-temperature environments. Chen WH; Du SW; Yang HH; Wu JS J Air Waste Manag Assoc; 2008 May; 58(5):702-10. PubMed ID: 18512447 [TBL] [Abstract][Full Text] [Related]
2. Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. Gao S; Zhang Y; Meng J; Shu J Sci Total Environ; 2009 Jan; 407(3):1193-9. PubMed ID: 19012948 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of soot and particulate matter formation during high temperature pyrolysis and gasification of waste derived from MSW. Yang W; Gupta R; Song Z; Wang B; Sun L Waste Manag; 2024 Jun; 182():21-31. PubMed ID: 38631177 [TBL] [Abstract][Full Text] [Related]
4. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis. Gao M; Wang Y; Dong J; Li F; Xie K Chemosphere; 2016 Sep; 158():1-8. PubMed ID: 27239965 [TBL] [Abstract][Full Text] [Related]
5. Polycyclic aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effect of the primary furnace temperature. Wang J; Levendis YA; Richter H; Howard JB; Carlson J Environ Sci Technol; 2001 Sep; 35(17):3541-52. PubMed ID: 11563660 [TBL] [Abstract][Full Text] [Related]
6. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China. Lu S; Tan Z; Liu P; Zhao H; Liu D; Yu S; Cheng P; Win MS; Hu J; Tian L; Wu M; Yonemochi S; Wang Q Chemosphere; 2017 Nov; 186():278-286. PubMed ID: 28783549 [TBL] [Abstract][Full Text] [Related]
7. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Leoni C; Pokorná P; Hovorka J; Masiol M; Topinka J; Zhao Y; Křůmal K; Cliff S; Mikuška P; Hopke PK Environ Pollut; 2018 Mar; 234():145-154. PubMed ID: 29175476 [TBL] [Abstract][Full Text] [Related]
8. Size distribution and single particle characterization of airborne particulate matter collected in a silicon carbide plant. Ervik TK; Benker N; Weinbruch S; Thomassen Y; Ellingsen DG; Berlinger B Environ Sci Process Impacts; 2019 Mar; 21(3):564-574. PubMed ID: 30723847 [TBL] [Abstract][Full Text] [Related]
9. Investigation of submicron aerosol characteristics in Changzhou, China: Composition, source, and comparison with co-collected PM Ye Z; Li Q; Liu J; Luo S; Zhou Q; Bi C; Ma S; Chen Y; Chen H; Li L; Ge X Chemosphere; 2017 Sep; 183():176-185. PubMed ID: 28549323 [TBL] [Abstract][Full Text] [Related]
10. Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood. Sippula O; Huttunen K; Hokkinen J; Kärki S; Suhonen H; Kajolinna T; Kortelainen M; Karhunen T; Jalava P; Uski O; Yli-Pirilä P; Hirvonen MR; Jokiniemi J Environ Pollut; 2019 May; 248():888-897. PubMed ID: 30856504 [TBL] [Abstract][Full Text] [Related]
11. Polynuclear aromatic hydrocarbon and particulate emissions from two-stage combustion of polystyrene: the effects of the secondary furnace (afterburner) temperature and soot filtration. Wang J; Richter H; Howard JB; Levendis YA; Carlson J Environ Sci Technol; 2002 Feb; 36(4):797-808. PubMed ID: 11878400 [TBL] [Abstract][Full Text] [Related]
12. Gas-particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze. Jin R; Zheng M; Yang H; Yang L; Wu X; Xu Y; Liu G Environ Pollut; 2017 Dec; 231(Pt 2):1601-1608. PubMed ID: 28964608 [TBL] [Abstract][Full Text] [Related]
13. Emission characteristics of coal gasification fine slag direct combustion and co-firing with coal. Shi Z; Shu Y; Wang Z; Mao H; Zhang J; Tan H; Wang X J Environ Manage; 2023 Oct; 344():118498. PubMed ID: 37384983 [TBL] [Abstract][Full Text] [Related]
14. A study on toxic organic emissions from batch combustion of styrene. Westblad C; Levendis YA; Richter H; Howard JB; Carlson J Chemosphere; 2002 Oct; 49(4):395-412. PubMed ID: 12365837 [TBL] [Abstract][Full Text] [Related]
15. Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY-GC-MS. Dong J; Li F; Xie K J Hazard Mater; 2012 Dec; 243():80-5. PubMed ID: 23140877 [TBL] [Abstract][Full Text] [Related]
16. Ash particulate formation from pulverized coal under oxy-fuel combustion conditions. Jia Y; Lighty JS Environ Sci Technol; 2012 May; 46(9):5214-21. PubMed ID: 22468843 [TBL] [Abstract][Full Text] [Related]
17. Impact of pyrolysis conditions on polycyclic aromatic hydrocarbons (PAHs) formation in particulate matter (PM) during sewage sludge pyrolysis. Ko JH; Wang J; Xu Q Chemosphere; 2018 Oct; 208():108-116. PubMed ID: 29864701 [TBL] [Abstract][Full Text] [Related]
18. Polycyclic aromatic hydrocarbons (PAHs) around tea processing industries using high-sulfur coals. Saikia J; Khare P; Saikia P; Saikia BK Environ Geochem Health; 2017 Oct; 39(5):1101-1116. PubMed ID: 27679456 [TBL] [Abstract][Full Text] [Related]
20. Submicron particle formation from co-firing of coal and municipal sewage sludge. Zhou A; Ma W; Ruan R; Yu S; Tan H; Deng S; Liang K; Liu K; Han D; Wang X J Environ Manage; 2022 Mar; 311():114863. PubMed ID: 35276565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]