BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 18513043)

  • 1. Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow.
    Crassous JJ; Siebenbürger M; Ballauff M; Drechsler M; Hajnal D; Henrich O; Fuchs M
    J Chem Phys; 2008 May; 128(20):204902. PubMed ID: 18513043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermosensitive core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions.
    Crassous JJ; Siebenbürger M; Ballauff M; Drechsler M; Henrich O; Fuchs M
    J Chem Phys; 2006 Nov; 125(20):204906. PubMed ID: 17144739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow curves of dense colloidal dispersions: schematic model analysis of the shear-dependent viscosity near the colloidal glass transition.
    Fuchs M; Ballauff M
    J Chem Phys; 2005 Mar; 122(9):094707. PubMed ID: 15836162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
    Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy.
    Crassous JJ; Ballauff M; Drechsler M; Schmidt J; Talmon Y
    Langmuir; 2006 Mar; 22(6):2403-6. PubMed ID: 16519427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow curves of colloidal dispersions close to the glass transition. Asymptotic scaling laws in a schematic model of mode coupling theory.
    Hajnal D; Fuchs M
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):125-38. PubMed ID: 18777045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural relaxation and rheological response of a driven amorphous system.
    Varnik F
    J Chem Phys; 2006 Oct; 125(16):164514. PubMed ID: 17092112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between structure and rheology of a model colloidal glass.
    Di Cola E; Moussaïd A; Sztucki M; Narayanan T; Zaccarelli E
    J Chem Phys; 2009 Oct; 131(14):144903. PubMed ID: 19831465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Bauschinger effect in supercooled melts under shear: results from mode coupling theory and molecular dynamics simulations.
    Frahsa F; Bhattacharjee AK; Horbach J; Fuchs M; Voigtmann T
    J Chem Phys; 2013 Mar; 138(12):12A513. PubMed ID: 23556764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic moduli of a Brownian colloidal glass former.
    Fritschi S; Fuchs M
    J Phys Condens Matter; 2018 Jan; 30(2):024003. PubMed ID: 29182519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear rheology of glass-forming colloidal dispersions: transient stress-strain relations from anisotropic mode coupling theory and thermosensitive microgels.
    Amann CM; Siebenbürger M; Ballauff M; Fuchs M
    J Phys Condens Matter; 2015 May; 27(19):194121. PubMed ID: 25922898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dense colloidal suspensions under time-dependent shear.
    Brader JM; Voigtmann T; Cates ME; Fuchs M
    Phys Rev Lett; 2007 Feb; 98(5):058301. PubMed ID: 17358908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A direct test of the correlation between elastic parameters and fragility of ten glass formers and their relationship to elastic models of the glass transition.
    Torchinsky DH; Johnson JA; Nelson KA
    J Chem Phys; 2009 Feb; 130(6):064502. PubMed ID: 19222279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the static yield stress in a binary Lennard-Jones glass.
    Varnik F; Bocquet L; Barrat JL
    J Chem Phys; 2004 Feb; 120(6):2788-801. PubMed ID: 15268425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ideal glass transitions, shear modulus, activated dynamics, and yielding in fluids of nonspherical objects.
    Yatsenko G; Schweizer KS
    J Chem Phys; 2007 Jan; 126(1):014505. PubMed ID: 17212498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coarse-grained explicit solvent simulation of rheology of colloidal suspensions.
    Pryamitsyn V; Ganesan V
    J Chem Phys; 2005 Mar; 122(10):104906. PubMed ID: 15836357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of Lees-Edwards periodic boundary conditions for direct numerical simulations of particle dispersions under shear flow.
    Kobayashi H; Yamamoto R
    J Chem Phys; 2011 Feb; 134(6):064110. PubMed ID: 21322664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient dynamics in dense colloidal suspensions under shear: shear rate dependence.
    Laurati M; Mutch KJ; Koumakis N; Zausch J; Amann CP; Schofield AB; Petekidis G; Brady JF; Horbach J; Fuchs M; Egelhaaf SU
    J Phys Condens Matter; 2012 Nov; 24(46):464104. PubMed ID: 23114203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear rheology of colloidal dispersions.
    Brader JM
    J Phys Condens Matter; 2010 Sep; 22(36):363101. PubMed ID: 21386516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear and nonlinear rheology of dense emulsions across the glass and the jamming regimes.
    Scheffold F; Cardinaux F; Mason TG
    J Phys Condens Matter; 2013 Dec; 25(50):502101. PubMed ID: 24222446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.