These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 18513074)

  • 41. High conductivity in hydrothermally grown AgCuO(2) single crystals verified using focused-ion-beam-deposited nanocontacts.
    Muñoz-Rojas D; Córdoba R; Fernández-Pacheco A; De Teresa JM; Sauthier G; Fraxedas J; Walton RI; Casañ-Pastor N
    Inorg Chem; 2010 Dec; 49(23):10977-83. PubMed ID: 21049939
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A scanning AC calorimetry technique for the analysis of nano-scale quantities of materials.
    Xiao K; Gregoire JM; McCluskey PJ; Vlassak JJ
    Rev Sci Instrum; 2012 Nov; 83(11):114901. PubMed ID: 23206083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heat capacity measurements by means of thermal relaxation method in medium temperature range.
    Hatta I
    Rev Sci Instrum; 1979 Mar; 50(3):292. PubMed ID: 18699494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3ω-Völklein method.
    Ftouni H; Tainoff D; Richard J; Lulla K; Guidi J; Collin E; Bourgeois O
    Rev Sci Instrum; 2013 Sep; 84(9):094902. PubMed ID: 24089850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K.
    Tomita M; Murakami M
    Nature; 2003 Jan; 421(6922):517-20. PubMed ID: 12556888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New methodology for simultaneous volumetric and calorimetric measurements: direct determination of alpha(p) and C(p) for liquids under pressure.
    Casás LM; Plantier F; Bessières D
    Rev Sci Instrum; 2009 Dec; 80(12):124902. PubMed ID: 20059162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A "2-omega" technique for measuring anisotropy of thermal conductivity.
    Ramu AT; Bowers JE
    Rev Sci Instrum; 2012 Dec; 83(12):124903. PubMed ID: 23278014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular dynamics study of the repulsive form influence of the interaction potential on structural, thermodynamic, interfacial, and transport properties.
    Galliero G; Boned C
    J Chem Phys; 2008 Aug; 129(7):074506. PubMed ID: 19044782
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.
    Schwamb T; Burg BR; Schirmer NC; Poulikakos D
    Nanotechnology; 2009 Oct; 20(40):405704. PubMed ID: 19738310
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heat-capacity measurements on small samples: the hybrid method.
    Klaasse JC; Bruck EH
    Rev Sci Instrum; 2008 Dec; 79(12):123906. PubMed ID: 19123578
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensitive thermal transitions of nanoscale polymer samples using the bimetallic effect: application to ultra-thin polythiophene.
    Ahumada O; Pérez-Madrigal MM; Ramirez J; Curcó D; Esteves C; Salvador-Matar A; Luongo G; Armelin E; Puiggalí J; Alemán C
    Rev Sci Instrum; 2013 May; 84(5):053904. PubMed ID: 23742563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device.
    Weathers A; Bi K; Pettes MT; Shi L
    Rev Sci Instrum; 2013 Aug; 84(8):084903. PubMed ID: 24007092
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrothermal synthesis, characterization, electronic structure, and thermoelectric properties of (Ca(0.85)OH)(1.16)CoO(2).
    Pei J; Chen G; Zhou N
    J Chem Phys; 2009 Jan; 130(4):044706. PubMed ID: 19191403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel on-chip three-dimensional micromachined calorimeter with fully enclosed and suspended thin-film chamber for thermal characterization of liquid samples.
    Davaji B; Jeong Bak H; Chang WJ; Hoon Lee C
    Biomicrofluidics; 2014 May; 8(3):034101. PubMed ID: 24926386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase transformations in Sr0.8Ba0.2CoO2.5 brownmillerite: correlation between structure and transport properties.
    de la Calle C; Alonso JA; Aguadero A; Fernández-Díaz MT
    Dalton Trans; 2009 Jun; (21):4104-14. PubMed ID: 19452058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.