These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18513078)

  • 1. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing.
    Xia K; Chen R; Huang S; Luo SN
    Rev Sci Instrum; 2008 May; 79(5):053906. PubMed ID: 18513078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids.
    Dai F; Xia K; Luo SN
    Rev Sci Instrum; 2008 Dec; 79(12):123903. PubMed ID: 19123575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch.
    Huang W; Chen G; Hu M; Liang Q; Yang K; Zhang M
    Rev Sci Instrum; 2019 Feb; 90(2):025110. PubMed ID: 30831773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.
    Trexler MM; Lennon AM; Wickwire AC; Harrigan TP; Luong QT; Graham JL; Maisano AJ; Roberts JC; Merkle AC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1920-8. PubMed ID: 22098890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modified Kolsky bar system for testing ultrasoft materials under intermediate strain rates.
    Chen R; Huang S; Xia K; Lu F
    Rev Sci Instrum; 2009 Jul; 80(7):076108. PubMed ID: 19655993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse Design of Constant Strain Rate Loading in SHPB Based on Pulse Shaping Technique.
    Chen S; Chi R; Cao W; Pang B; Chao Z; Jiang L; Luo T; Zhang R
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic punch method to quantify the dynamic shear strength of brittle solids.
    Huang S; Feng XT; Xia K
    Rev Sci Instrum; 2011 May; 82(5):053901. PubMed ID: 21639512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of dynamic effects in a two-bar/three-point bend fracture test.
    Jiang F; Vecchio KS
    Rev Sci Instrum; 2007 Jun; 78(6):063903. PubMed ID: 17614622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.
    Bekker A; Cloete TJ; Chinsamy-Turan A; Nurick GN; Kok S
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():443-9. PubMed ID: 25492009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic and quasi-static compressive response of porcine muscle.
    Song B; Chen W; Ge Y; Weerasooriya T
    J Biomech; 2007; 40(13):2999-3005. PubMed ID: 17448479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a True-Biaxial Split Hopkinson Pressure Bar Device and Its Application.
    Pang S; Tao W; Liang Y; Huan S; Liu Y; Chen J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A technique for combined dynamic compression-shear test.
    Zhao PD; Lu FY; Chen R; Lin YL; Li JL; Lu L; Sun GL
    Rev Sci Instrum; 2011 Mar; 82(3):035110. PubMed ID: 21456792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars.
    Lea LJ; Jardine AP
    Rev Sci Instrum; 2016 Feb; 87(2):023101. PubMed ID: 26931828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector.
    Fu H; Tang XR; Li JL; Tan DW
    Rev Sci Instrum; 2014 Apr; 85(4):045120. PubMed ID: 24784672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.
    Harrigan JJ; Ahonsi B; Palamidi E; Reid SR
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130201. PubMed ID: 25071237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The behavior of cancellous bone from quasi-static to dynamic strain rates with emphasis on the intermediate regime.
    Prot M; Cloete TJ; Saletti D; Laporte S
    J Biomech; 2016 May; 49(7):1050-1057. PubMed ID: 26970887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone.
    Cloete TJ; Paul G; Ismail EB
    Philos Trans A Math Phys Eng Sci; 2014 May; 372(2015):20130210. PubMed ID: 24711493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using the split Hopkinson pressure bar to validate material models.
    Church P; Cornish R; Cullis I; Gould P; Lewtas I
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130294. PubMed ID: 25071238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved specimen recovery in tensile split Hopkinson bar.
    Isakov M; Hiermaier S; Kuokkala VT
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130194. PubMed ID: 25071235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of microscopic damage accumulation in brittle solids subjected to dynamic compressive loading.
    Huang S; Xia K; Zheng H
    Rev Sci Instrum; 2013 Sep; 84(9):093903. PubMed ID: 24089837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.