BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 18513324)

  • 1. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species.
    Sumimoto H
    FEBS J; 2008 Jul; 275(13):3249-77. PubMed ID: 18513324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NOX family NADPH oxidases: not just in mammals.
    Bedard K; Lardy B; Krause KH
    Biochimie; 2007 Sep; 89(9):1107-12. PubMed ID: 17400358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation.
    Takemoto D; Tanaka A; Scott B
    Fungal Genet Biol; 2007 Nov; 44(11):1065-76. PubMed ID: 17560148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular composition and regulation of the Nox family NAD(P)H oxidases.
    Sumimoto H; Miyano K; Takeya R
    Biochem Biophys Res Commun; 2005 Dec; 338(1):677-86. PubMed ID: 16157295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5.
    Tirone F; Radu L; Craescu CT; Cox JA
    Biochemistry; 2010 Feb; 49(4):761-71. PubMed ID: 20028137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of superoxide-producing NADPH oxidases in nonphagocytic cells.
    Takeya R; Ueno N; Sumimoto H
    Methods Enzymol; 2006; 406():456-68. PubMed ID: 16472678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
    Bedard K; Krause KH
    Physiol Rev; 2007 Jan; 87(1):245-313. PubMed ID: 17237347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role for the first SH3 domain of p67phox in activation of superoxide-producing NADPH oxidases.
    Maehara Y; Miyano K; Sumimoto H
    Biochem Biophys Res Commun; 2009 Feb; 379(2):589-93. PubMed ID: 19116138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes.
    Kawahara T; Quinn MT; Lambeth JD
    BMC Evol Biol; 2007 Jul; 7():109. PubMed ID: 17612411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The domain organization of p67 phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes.
    Yuzawa S; Miyano K; Honbou K; Inagaki F; Sumimoto H
    J Innate Immun; 2009; 1(6):543-55. PubMed ID: 20375610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody.
    Campion Y; Paclet MH; Jesaitis AJ; Marques B; Grichine A; Berthier S; Lenormand JL; Lardy B; Stasia MJ; Morel F
    Biochimie; 2007 Sep; 89(9):1145-58. PubMed ID: 17397983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of novel superoxide-producing NAD(P)H oxidases.
    Takeya R; Sumimoto H
    Antioxid Redox Signal; 2006; 8(9-10):1523-32. PubMed ID: 16987008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of activation of NADPH oxidases.
    Clark RA; Epperson TK; Valente AJ
    Jpn J Infect Dis; 2004 Oct; 57(5):S22-3. PubMed ID: 15507761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between the SH3 domains and C-terminal proline-rich region in NADPH oxidase organizer 1 (Noxo1).
    Yamamoto A; Kami K; Takeya R; Sumimoto H
    Biochem Biophys Res Commun; 2007 Jan; 352(2):560-5. PubMed ID: 17126813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox.
    Mizuki K; Takeya R; Kuribayashi F; Nobuhisa I; Kohda D; Nunoi H; Takeshige K; Sumimoto H
    Arch Biochem Biophys; 2005 Dec; 444(2):185-94. PubMed ID: 16297854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase.
    Taura M; Miyano K; Minakami R; Kamakura S; Takeya R; Sumimoto H
    Biochem J; 2009 Apr; 419(2):329-38. PubMed ID: 19090790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p40phox as an alternative organizer to p47phox in Nox2 activation: a new mechanism involving an interaction with p22phox.
    Tamura M; Shiozaki I; Ono S; Miyano K; Kunihiro S; Sasaki T
    FEBS Lett; 2007 Sep; 581(23):4533-8. PubMed ID: 17803994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the role for Rho family GTPases in NADPH oxidase activation.
    Miyano K; Sumimoto H
    Methods Mol Biol; 2012; 827():195-212. PubMed ID: 22144277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of reactive oxygen species in fungal cellular differentiations.
    Scott B; Eaton CJ
    Curr Opin Microbiol; 2008 Dec; 11(6):488-93. PubMed ID: 18983937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.