These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 18513350)

  • 1. Mechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state--computational simulation.
    de Almeida AC; Rodrigues AM; Scorza FA; Cavalheiro EA; Teixeira HZ; Duarte MA; Silveira GA; Arruda EZ
    Epilepsia; 2008 Nov; 49(11):1908-24. PubMed ID: 18513350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.
    Florence G; Dahlem MA; Almeida AC; Bassani JW; Kurths J
    J Theor Biol; 2009 May; 258(2):219-28. PubMed ID: 19490858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Firing patterns and synchronization in nonsynaptic epileptiform activity: the effect of gap junctions modulated by potassium accumulation.
    Santos DO; Rodrigues AM; de Almeida AC; Dickman R
    Phys Biol; 2009 Nov; 6(4):046019. PubMed ID: 19940352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying essential conditions for refractoriness of Leão's spreading depression-computational modeling.
    Teixeira HZ; Almeida AC; Infantosi AF; Rodrigues AM; Costa NL; Duarte MA
    Comput Biol Chem; 2008 Aug; 32(4):273-81. PubMed ID: 18485826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH during non-synaptic epileptiform activity-computational simulations.
    Rodrigues AM; Santos LE; Covolan L; Hamani C; de Almeida AC
    Phys Biol; 2015 Sep; 12(5):056007. PubMed ID: 26332081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational models of epileptiform activity in single neurons.
    Heilman AD; Quattrochi J
    Biosystems; 2004 Dec; 78(1-3):1-21. PubMed ID: 15555755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling extracellular space electrodiffusion during Leão's spreading depression.
    Almeida AC; Texeira HZ; Duarte MA; Infantosi AF
    IEEE Trans Biomed Eng; 2004 Mar; 51(3):450-8. PubMed ID: 15000376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurophysiological mechanisms underlying epileptogenesis.
    Mutani R
    Funct Neurol; 1986; 1(4):385-9. PubMed ID: 3609869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of potassium lateral diffusion in non-synaptic epilepsy: a computational study.
    Park EH; Durand DM
    J Theor Biol; 2006 Feb; 238(3):666-82. PubMed ID: 16085109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of co-transporter blockers on non-synaptic epileptiform activity-computational simulation.
    Lopes MR; Santos LE; Rodrigues AM; Duarte MA; Infantosi AF; Scorza FA; Arida RM; Madureira AP; da Silveira GA; dos Santos IC; Cavalheiro EA; de Almeida AC
    Phys Biol; 2013 Oct; 10(5):056008. PubMed ID: 24092000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro.
    Gnatkovsky V; Librizzi L; Trombin F; de Curtis M
    Ann Neurol; 2008 Dec; 64(6):674-86. PubMed ID: 19107991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intercellular coupling mediated by potassium accumulation in peg-and-socket junctions.
    Vigmond EJ; Bardakjian BL; Thuneberg L; Huizinga JD
    IEEE Trans Biomed Eng; 2000 Dec; 47(12):1576-83. PubMed ID: 11125592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The slow Ca2+ -dependent K+ -current facilitates synchronization of hyperexcitable pyramidal neurons.
    Skov J; Nedergaard S; Andreasen M
    Brain Res; 2009 Feb; 1252():76-86. PubMed ID: 19059224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the potassium interactions with the palytoxin induced channels in Na+/K+ pump.
    Rodrigues AM; Almeida AC; Infantosi AF; Teixeira HZ; Duarte MA
    Comput Biol Chem; 2009 Feb; 33(1):14-21. PubMed ID: 18706866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of neuronal synchronization during epileptiform activity.
    Dudek FE; Patrylo PR; Wuarin JP
    Adv Neurol; 1999; 79():699-708. PubMed ID: 10514856
    [No Abstract]   [Full Text] [Related]  

  • 16. The neuronal sources of EEG: modeling of simultaneous scalp and intracerebral recordings in epilepsy.
    Cosandier-Rimélé D; Merlet I; Badier JM; Chauvel P; Wendling F
    Neuroimage; 2008 Aug; 42(1):135-46. PubMed ID: 18515148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular mechanisms of cobalt-induced hippocampal epileptiform discharges.
    He J; Hsiang HL; Wu C; Mylvagnanam S; Carlen PL; Zhang L
    Epilepsia; 2009 Jan; 50(1):99-115. PubMed ID: 18727680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent regulation of HCN1 protein in cortical neurons.
    Arimitsu T; Nuriya M; Ikeda K; Takahashi T; Yasui M
    Biochem Biophys Res Commun; 2009 Sep; 387(1):87-91. PubMed ID: 19563776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusive coupling and network periodicity: a computational study.
    Park EH; Feng Z; Durand DM
    Biophys J; 2008 Aug; 95(3):1126-37. PubMed ID: 18441034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling small-patterned neuronal networks coupled to microelectrode arrays.
    Massobrio P; Martinoia S
    J Neural Eng; 2008 Sep; 5(3):350-9. PubMed ID: 18756034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.