These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 18513909)
1. Visual colorimetric detection of berberine hydrochloride with silver nanoparticles. Ling J; Sang Y; Huang CZ J Pharm Biomed Anal; 2008 Aug; 47(4-5):860-4. PubMed ID: 18513909 [TBL] [Abstract][Full Text] [Related]
2. Surface plasmon resonance based selective and sensitive colorimetric determination of azithromycin using unmodified silver nanoparticles in pharmaceuticals and human plasma. Chavada VD; Bhatt NM; Sanyal M; Shrivastav PS Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():97-103. PubMed ID: 27419643 [TBL] [Abstract][Full Text] [Related]
3. β-cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. Chen X; Parker SG; Zou G; Su W; Zhang Q ACS Nano; 2010 Nov; 4(11):6387-94. PubMed ID: 20973513 [TBL] [Abstract][Full Text] [Related]
4. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Miao P; Liu T; Li X; Ning L; Yin J; Han K Biosens Bioelectron; 2013 Nov; 49():20-4. PubMed ID: 23708813 [TBL] [Abstract][Full Text] [Related]
5. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Han C; Li H Analyst; 2010 Mar; 135(3):583-8. PubMed ID: 20174714 [TBL] [Abstract][Full Text] [Related]
6. Label-free colorimetric assay for biological thiols based on ssDNA/silver nanoparticle system by salt amplification. Chen Z; He Y; Luo S; Lin H; Chen Y; Sheng P; Li J; Chen B; Liu C; Cai Q Analyst; 2010 May; 135(5):1066-9. PubMed ID: 20405067 [TBL] [Abstract][Full Text] [Related]
7. Chemiluminescence of luminol catalyzed by silver nanoparticles. Chen H; Gao F; He R; Cui D J Colloid Interface Sci; 2007 Nov; 315(1):158-63. PubMed ID: 17681516 [TBL] [Abstract][Full Text] [Related]
8. Derivatized silver nanoparticles as sensor for ultra-trace nitrate determination based on light scattering phenomenon. Wang CC; Luconi MO; Masi AN; Fernández LP Talanta; 2009 Jan; 77(3):1238-43. PubMed ID: 19064118 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. Wang Y; Yang F; Yang X ACS Appl Mater Interfaces; 2010 Feb; 2(2):339-42. PubMed ID: 20356177 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Kanjanawarut R; Su X Anal Chem; 2009 Aug; 81(15):6122-9. PubMed ID: 20337394 [TBL] [Abstract][Full Text] [Related]
11. Metallic nanoparticles bioassay for Enterobacter cloacae P99 beta-lactamase activity and inhibitor screening. Liu R; Teo W; Tan S; Feng H; Padmanabhan P; Xing B Analyst; 2010 May; 135(5):1031-6. PubMed ID: 20419253 [TBL] [Abstract][Full Text] [Related]
12. A colorimetric method for highly sensitive and accurate detection of iodide by finding the critical color in a color change process using silver triangular nanoplates. Yang XH; Ling J; Peng J; Cao QE; Ding ZT; Bian LC Anal Chim Acta; 2013 Oct; 798():74-81. PubMed ID: 24070486 [TBL] [Abstract][Full Text] [Related]
13. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates. Huy GD; Zhang M; Zuo P; Ye BC Analyst; 2011 Aug; 136(16):3289-94. PubMed ID: 21743915 [TBL] [Abstract][Full Text] [Related]
14. Visual sandwich immunoassay system on the basis of plasmon resonance scattering signals of silver nanoparticles. Ling J; Li YF; Huang CZ Anal Chem; 2009 Feb; 81(4):1707-14. PubMed ID: 19173573 [TBL] [Abstract][Full Text] [Related]
15. A new rapid colorimetric detection method of Al³⁺ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles. Yang N; Gao Y; Zhang Y; Shen Z; Wu A Talanta; 2014 May; 122():272-7. PubMed ID: 24720995 [TBL] [Abstract][Full Text] [Related]
16. Cooperative binding of bifunctionalized and click-synthesized silver nanoparticles for colorimetric co(2+) sensing. Yao Y; Tian D; Li H ACS Appl Mater Interfaces; 2010 Mar; 2(3):684-90. PubMed ID: 20356269 [TBL] [Abstract][Full Text] [Related]
17. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Li L; Li B Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202 [TBL] [Abstract][Full Text] [Related]
18. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802 [TBL] [Abstract][Full Text] [Related]
19. Colorimetric determination of o-phenylenediamine in water samples based on the formation of silver nanoparticles as a colorimetric probe. Li N; Gu Y; Gao M; Wang Z; Xiao D; Li Y; Lin R; He H Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():328-33. PubMed ID: 25615678 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric detection of riboflavin by silver nanoparticles capped with β-cyclodextrin-grafted citrate. Ma Q; Song J; Zhang S; Wang M; Guo Y; Dong C Colloids Surf B Biointerfaces; 2016 Dec; 148():66-72. PubMed ID: 27591572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]