BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 18513958)

  • 1. Production of carbonyl reductase by Geotrichum candidum in a laboratory scale bioreactor.
    Bhattacharyya MS; Singh A; Banerjee UC
    Bioresour Technol; 2008 Dec; 99(18):8765-70. PubMed ID: 18513958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of carbonyl reductase by Metschnikowia koreensis.
    Singh A; Chisti Y; Banerjee UC
    Bioresour Technol; 2011 Nov; 102(22):10679-85. PubMed ID: 21967713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor.
    Tay A; Yang ST
    Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of carbonyl reductase production of Geotrichum candidum for the transformation of 1-acetonaphthone to S(-)-1-(1'-napthyl) ethanol.
    Bhattacharyya MS; Banerjee UC
    Bioresour Technol; 2007 Jul; 98(10):1958-63. PubMed ID: 17027259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of exopolysaccharide production from Armillaria mellea in submerged cultures.
    Lung MY; Huang PC
    Lett Appl Microbiol; 2010 Feb; 50(2):198-204. PubMed ID: 20002574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species.
    Celik E; Calik P
    Biotechnol Prog; 2004; 20(2):491-9. PubMed ID: 15058994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of phytase (myo-inositolhexakisphosphate phosphohydrolase) by Aspergillus niger van Teighem in laboratory-scale fermenter.
    Vats P; Sahoo DK; Banerjee UC
    Biotechnol Prog; 2004; 20(3):737-43. PubMed ID: 15176876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy].
    Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of cell growth and cyclosporin A production by Tolypocladium inflatum when scaling up from shake flask to bioreactor.
    El Enshasy H; Abdel Fattah Y; Atta A; Anwar M; Omar H; El Magd SA; Zahra RA
    J Microbiol Biotechnol; 2008 Jan; 18(1):128-34. PubMed ID: 18239429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.
    Garcia-Ochoa F; Gomez E
    Biotechnol Adv; 2009; 27(2):153-76. PubMed ID: 19041387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors.
    Dahlgren ME; Powell AL; Greasham RL; George HA
    Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dissolved oxygen and agitation on production of serratiopeptidase by Serratia marcescens NRRL B-23112 in stirred tank bioreactor and its kinetic modeling.
    Pansuriya R; Singhal R
    J Microbiol Biotechnol; 2011 Apr; 21(4):430-7. PubMed ID: 21532328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dissolved oxygen tension and agitation rate on the production of heat-shock protein glycoprotein 96 by MethA tumor cell suspension culture in stirred-tank bioreactors.
    Tang YJ; Li HM; Hamel JF
    Bioprocess Biosyst Eng; 2009 Jun; 32(4):475-84. PubMed ID: 18941797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole production medium.
    Potumarthi R; Subhakar C; Vanajakshi J; Jetty A
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):700-10. PubMed ID: 18574564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aeration and agitation on the protease production by Staphylococcus aureus mutant RC128 in a stirred tank bioreactor.
    Ducros E; Ferrari M; Pellegrino M; Raspanti C; Bogni C
    Bioprocess Biosyst Eng; 2009 Jan; 32(1):143-8. PubMed ID: 18491147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.
    Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J
    Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-glutamic acid production in a continuous stirred tank bioreactor using coimmobilized bio-catalyst using a fluorosensor.
    Prabhu N; Babu JS; Sundaram S
    Biomed Sci Instrum; 2002; 38():495-500. PubMed ID: 12085657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks.
    Zhang H; Williams-Dalson W; Keshavarz-Moore E; Shamlou PA
    Biotechnol Appl Biochem; 2005 Feb; 41(Pt 1):1-8. PubMed ID: 15310285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations.
    Isett K; George H; Herber W; Amanullah A
    Biotechnol Bioeng; 2007 Dec; 98(5):1017-28. PubMed ID: 17486656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD).
    Puskeiler R; Kaufmann K; Weuster-Botz D
    Biotechnol Bioeng; 2005 Mar; 89(5):512-23. PubMed ID: 15669089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.