These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 18514236)
1. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors. Martín R; Ladera C; Bartolomé-Martín D; Torres M; Sánchez-Prieto J Neuropharmacology; 2008 Sep; 55(4):464-73. PubMed ID: 18514236 [TBL] [Abstract][Full Text] [Related]
2. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals. Ladera C; Martín R; Bartolomé-Martín D; Torres M; Sánchez-Prieto J Eur J Neurosci; 2009 Mar; 29(6):1131-40. PubMed ID: 19302149 [TBL] [Abstract][Full Text] [Related]
3. Potentiation of mGlu7 receptor-mediated glutamate release at nerve terminals containing N and P/Q type Ca2+ channels. Ferrero JJ; Bartolomé-Martín D; Torres M; Sánchez-Prieto J Neuropharmacology; 2013 Apr; 67():213-22. PubMed ID: 23174341 [TBL] [Abstract][Full Text] [Related]
4. G-protein-coupled GABAB receptors inhibit Ca2+ channels and modulate transmitter release in descending turtle spinal cord terminal synapsing motoneurons. Castro A; Aguilar J; Elias D; Felix R; Delgado-Lezama R J Comp Neurol; 2007 Aug; 503(5):642-54. PubMed ID: 17559099 [TBL] [Abstract][Full Text] [Related]
5. mGluR7 inhibits glutamate release through a PKC-independent decrease in the activity of P/Q-type Ca2+ channels and by diminishing cAMP in hippocampal nerve terminals. Martín R; Torres M; Sánchez-Prieto J Eur J Neurosci; 2007 Jul; 26(2):312-22. PubMed ID: 17650109 [TBL] [Abstract][Full Text] [Related]
6. Non-additive potentiation of glutamate release by phorbol esters and metabotropic mGlu7 receptor in cerebrocortical nerve terminals. Martín R; Bartolomé-Martín D; Torres M; Sánchez-Prieto J J Neurochem; 2011 Feb; 116(4):476-85. PubMed ID: 21143597 [TBL] [Abstract][Full Text] [Related]
7. Omega-agatoxin-TK is a useful tool to study P-type Ca2+ channel-mediated changes in internal Ca2+ and glutamate release in depolarised brain nerve terminals. Sitges M; Galindo CA Neurochem Int; 2005 Jan; 46(1):53-60. PubMed ID: 15567515 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory effects of intravenous anaesthetic agents on K(+)-evoked glutamate release from rat cerebrocortical slices. Involvement of voltage-sensitive Ca(2+) channels and GABA(A) receptors. Kitayama M; Hirota K; Kudo M; Kudo T; Ishihara H; Matsuki A Naunyn Schmiedebergs Arch Pharmacol; 2002 Sep; 366(3):246-53. PubMed ID: 12172707 [TBL] [Abstract][Full Text] [Related]
9. Adenosine A(1)-receptor-mediated tonic inhibition of glutamate release at rat hippocampal CA3-CA1 synapses is primarily due to inhibition of N-type Ca(2+) channels. Manita S; Kawamura Y; Sato K; Inoue M; Kudo Y; Miyakawa H Eur J Pharmacol; 2004 Sep; 499(3):265-74. PubMed ID: 15381048 [TBL] [Abstract][Full Text] [Related]
10. The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration. Ladera C; Godino Mdel C; Martín R; Luján R; Shigemoto R; Ciruela F; Torres M; Sánchez-Prieto J J Neurochem; 2007 Dec; 103(6):2314-26. PubMed ID: 17944874 [TBL] [Abstract][Full Text] [Related]
11. Presynaptic mGlu7 receptors control GABA release in mouse hippocampus. Summa M; Di Prisco S; Grilli M; Usai C; Marchi M; Pittaluga A Neuropharmacology; 2013 Mar; 66():215-24. PubMed ID: 22564442 [TBL] [Abstract][Full Text] [Related]
12. Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway. Wang SJ Neuroscience; 2005; 134(3):987-1000. PubMed ID: 16026936 [TBL] [Abstract][Full Text] [Related]
13. Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors. Wang SJ Synapse; 2007 Jun; 61(6):401-11. PubMed ID: 17372967 [TBL] [Abstract][Full Text] [Related]
14. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes). Hung KL; Wang CC; Huang CY; Wang SJ Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169 [TBL] [Abstract][Full Text] [Related]
15. Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Vázquez E; Sánchez-Prieto J Eur J Neurosci; 1997 Oct; 9(10):2009-18. PubMed ID: 9421162 [TBL] [Abstract][Full Text] [Related]
16. N-type calcium channels mediate a GABA(B) presynaptic modulation in the corticostriatal synapse in turtle's paleostriatum augmentatum. Sánchez-Mejorada E; Sánchez-Mondragon G; Pineda JC; González M; Barral J Synapse; 2009 Oct; 63(10):855-62. PubMed ID: 19562696 [TBL] [Abstract][Full Text] [Related]
17. Noncompetitive metabotropic glutamate5 receptor antagonist (E)-2-methyl-6-styryl-pyridine (SIB1893) depresses glutamate release through inhibition of voltage-dependent Ca2+ entry in rat cerebrocortical nerve terminals (synaptosomes). Wang SJ; Sihra TS J Pharmacol Exp Ther; 2004 Jun; 309(3):951-8. PubMed ID: 14982967 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Wang SJ; Wang KY; Wang WC Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158 [TBL] [Abstract][Full Text] [Related]
19. omega-Conotoxin-GVIA-sensitive calcium channels on preganglionic nerve terminals in mouse pelvic and celiac ganglia. Jobling P Auton Neurosci; 2009 Mar; 146(1-2):56-61. PubMed ID: 19162562 [TBL] [Abstract][Full Text] [Related]
20. Gamma-aminobutyric acid type B receptors facilitate L-type and attenuate N-type Ca(2+) currents in isolated hippocampal neurons. Carter TJ; Mynlieff M J Neurosci Res; 2004 May; 76(3):323-33. PubMed ID: 15079861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]