BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 1851437)

  • 1. A phosphatase inhibitor enhances the DNase I sensitivity of active chromatin.
    Feng JL; Irving J; Villeponteau B
    Biochemistry; 1991 May; 30(19):4747-52. PubMed ID: 1851437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The DNase I sensitive state of "active" globin gene chromatin resists trypsin treatments which disrupt chromatin higher order structure.
    Lundell M; Martinson HG
    Biochemistry; 1989 Dec; 28(25):9757-65. PubMed ID: 2611258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNase I and hydroxyl radical characterization of chromatin complexes.
    Vitolo JM; Thiriet C; Hayes JJ
    Curr Protoc Mol Biol; 2001 May; Chapter 21():Unit 21.4. PubMed ID: 18265196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on nuclease digestion of chromatin phosphorylated in vivo.
    West MH; Pantazis P; Bonner WM
    J Biol Chem; 1985 Apr; 260(8):4558-60. PubMed ID: 2985554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptionally active chromatin can be selectively released by DNase I from Physarum polycephalum genome.
    Fronk J; Jerzmanowski A; Wiśniewski J; Czupryn M; Toczko K; Wilhelm ML; Wilhelm FX
    Acta Biochim Pol; 1988; 35(3):191-8. PubMed ID: 2469274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Globin gene family in murine erythroleukemia cells resides within two chromatin domains differing in higher order structure.
    Smith RD; Yu J; Annunziato A; Seale RL
    Biochemistry; 1984 Jun; 23(13):2970-6. PubMed ID: 6235849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution analysis of c-fos chromatin accessibility using a novel DNase I-PCR assay.
    Feng J; Villeponteau B
    Biochim Biophys Acta; 1992 Apr; 1130(3):253-8. PubMed ID: 1562603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences.
    Vidali G; Boffa LC; Bradbury EM; Allfrey VG
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2239-43. PubMed ID: 276864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity isolation of active murine erythroleukemia cell chromatin: uniform distribution of ubiquitinated histone H2A between active and inactive fractions.
    Dawson BA; Herman T; Haas AL; Lough J
    J Cell Biochem; 1991 Jun; 46(2):166-73. PubMed ID: 1655820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin structure of active and inactive human X chromosomes.
    Riley DE; Canfield TK; Gartler SM
    Nucleic Acids Res; 1984 Feb; 12(4):1829-45. PubMed ID: 6322123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deoxyribonuclease I sensitivity of the ovomucoid-ovoinhibitor gene complex in oviduct nuclei and relative location of CR1 repetitive sequences.
    Scott MJ; Tsai MJ; O'Malley BW
    Biochemistry; 1987 Oct; 26(21):6831-40. PubMed ID: 2827735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of DNase I sensitivity in Xenopus chromatin containing active and inactive globin, albumin and vitellogenin genes.
    Felber BK; Gerber-Huber S; Meier C; May FE; Westley B; Weber R; Ryffel GU
    Nucleic Acids Res; 1981 Jun; 9(11):2455-74. PubMed ID: 6269050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overall changes in chromatin sensitivity to DNase I during differentiation.
    Szabó G; Damjanovich S; Sümegi J; Klein G
    Exp Cell Res; 1987 Mar; 169(1):158-68. PubMed ID: 3469102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-specific changes in chromatin structure of the rat aldolase B locus.
    Tsutsumi K; Tsutsumi R; Ishikawa K
    J Biochem; 1987 Nov; 102(5):1013-21. PubMed ID: 2830247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of histone acetylation on the solubility, H1 content and DNase I sensitivity of newly assembled chromatin.
    Perry CA; Annunziato AT
    Nucleic Acids Res; 1989 Jun; 17(11):4275-91. PubMed ID: 2740216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferential binding of adriamycin and nogalamycin to DNase-I hypersensitive sites of Sarcoma-180 chromatin.
    Panda CK; Choudhury K; Neogy RK
    Chem Biol Interact; 1986 Jan; 57(1):65-72. PubMed ID: 3948285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thymocyte apoptosis induced by phosphorylation of histones is associated with the change in chromatin structure to allow easy accessibility of DNase.
    Enomoto R; Tatsuoka H; Yoshida Y; Komai T; Node K; Nogami R; Yamauchi A; Lee E
    IUBMB Life; 2002 Sep; 54(3):123-7. PubMed ID: 12489639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of apoptotic endonuclease DNase gamma on naked DNA and chromatin substrates.
    Mizuta R; Mizuta M; Araki S; Shiokawa D; Tanuma S; Kitamura D
    Biochem Biophys Res Commun; 2006 Jun; 345(2):560-7. PubMed ID: 16690030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The release of high mobility group protein H6 and protamine gene sequences upon selective DNase I degradation of trout testis chromatin.
    Levy-Wilson B; Kuehl L; Dixon GH
    Nucleic Acids Res; 1980 Jul; 8(13):2859-69. PubMed ID: 6253894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preferential damage of active chromatin by bleomycin.
    Kuo MT
    Cancer Res; 1981 Jun; 41(6):2439-43. PubMed ID: 6165462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.