These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1851440)

  • 1. Modification of a single tryptophan of the inorganic pyrophosphatase from thermophilic bacterium PS-3: possible involvement in its substrate binding.
    Kaneko S; Ichiba T; Hirano N; Hachimori A
    Biochim Biophys Acta; 1991 Apr; 1077(3):281-4. PubMed ID: 1851440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of tryptophan 149 of inorganic pyrophosphatase from Escherichia coli.
    Kaneko S; Ichiba T; Hirano N; Hachimori A
    Int J Biochem; 1993 Feb; 25(2):233-8. PubMed ID: 8383066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modifications of histidyl and tyrosyl residues of inorganic pyrophosphatase from Escherichia coli.
    Samejima T; Tamagawa Y; Kondo Y; Hachimori A; Kaji H; Takeda A; Shiroya Y
    J Biochem; 1988 May; 103(5):766-72. PubMed ID: 2846520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of tryptophan(s) at the active site of polyphosphate/ATP glucokinase from Mycobacterium tuberculosis.
    Hsieh PC; Shenoy BC; Haase FC; Jentoft JE; Phillips NF
    Biochemistry; 1993 Jun; 32(24):6243-9. PubMed ID: 8390296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of the inorganic pyrophosphatase gene from thermophilic bacterium PS-3.
    Maruyama S; Maeshima M; Nishimura M; Aoki M; Ichiba T; Sekiguchi J; Hachimori A
    Biochem Mol Biol Int; 1996 Nov; 40(4):679-88. PubMed ID: 8950026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of N-bromosuccinimide modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli. Activity, spectrophotometric, fluorescence and circular dichroism studies.
    Williams MN
    J Biol Chem; 1975 Jan; 250(1):322-30. PubMed ID: 237891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the tryptophan residue in the thiamin pyrophosphate binding site of mammalian pyruvate dehydrogenase.
    Ali MS; Shenoy BC; Eswaran D; Andersson LA; Roche TE; Patel MS
    J Biol Chem; 1995 Mar; 270(9):4570-4. PubMed ID: 7876227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of tryptophan in the spectral and catalytic properties of the copper enzyme, galactose oxidase.
    Kosman DJ; Ettinger MJ; Bereman RD; Giordano RS
    Biochemistry; 1977 Apr; 16(8):1597-601. PubMed ID: 192267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of histidine-118 of inorganic pyrophosphatase from thermophilic bacterium PS-3.
    Hirano N; Ichiba T; Hachimori A
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):595-9. PubMed ID: 1654888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of replacement of His-118, His-125 and Trp-143 by alanine on the catalytic activity and subunit assembly of inorganic pyrophosphatase from thermophilic bacterium PS-3.
    Aoki M; Uchiumi T; Tsuji E; Hachimori A
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):143-8. PubMed ID: 9512472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renaturation of yeast inorganic pyrophosphatase denatured in urea and guanidine hydrochloride.
    Yano Y; Irie M
    J Biochem; 1975 Nov; 78(5):1001-11. PubMed ID: 765323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of the thermostability of thermophilic bacterium PS-3 PPase on substitution of Ser-89 with carboxylic amino acids.
    Wada M; Uchiumi T; Ichiba T; Hachimori A
    J Biochem; 2001 Jun; 129(6):955-61. PubMed ID: 11388912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of xylanases: evidence for essential tryptophan and cysteine residues at the active site.
    Deshpande V; Hinge J; Rao M
    Biochim Biophys Acta; 1990 Nov; 1041(2):172-7. PubMed ID: 2265203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical modification of the tryptophan residues of wheat-germ agglutinin. Effect on fluorescence and saccharide-binding properties.
    Privat JP; Lotan R; Bouchard P; Sharon N; Monsigny M
    Eur J Biochem; 1976 Sep; 68(2):563-72. PubMed ID: 976273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The specific modification of histidyl residues of inorganic pyrophosphatase from Bacillus stearothermophilus by photooxidation.
    Shiroya Y; Samejima T
    J Biochem; 1985 Aug; 98(2):333-9. PubMed ID: 2999092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of divalent cations on thermophilic inorganic pyrophosphatase.
    Hachimori A; Shiroya Y; Hirato A; Miyahara T; Samejima T
    J Biochem; 1979 Jul; 86(1):121-30. PubMed ID: 479117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa.
    Rawat UB; Rao MB
    Biochim Biophys Acta; 1996 Apr; 1293(2):222-30. PubMed ID: 8620033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of essential tryptophan in amylomaltase from Corynebacterium glutamicum.
    Rachadech W; Nimpiboon P; Naumthong W; Nakapong S; Krusong K; Pongsawasdi P
    Int J Biol Macromol; 2015 May; 76():230-5. PubMed ID: 25748841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationship of xylanase: fluorimetric analysis of the tryptophan environment.
    Bandivadekar KR; Deshpande VV
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):583-7. PubMed ID: 8615833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of tryptophan residues in ribonuclease from a Rhizopus sp.
    Sanda A; Irie M
    J Biochem; 1980 Apr; 87(4):1079-87. PubMed ID: 7390980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.