These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 1851482)
41. Quantification of DNA structure from NMR data: conformation of d-ACATCGATGT. Chary KV; Modi S; Hosur RV; Govil G; Chen CQ; Miles HT Biochemistry; 1989 Jun; 28(12):5240-9. PubMed ID: 2548606 [TBL] [Abstract][Full Text] [Related]
42. Cu,Zn superoxide dismutase from Photobacterium leiognathi is an hyperefficient enzyme. Stroppolo ME; Sette M; O'Neill P; Polizio F; Cambria MT; Desideri A Biochemistry; 1998 Sep; 37(35):12287-92. PubMed ID: 9724543 [TBL] [Abstract][Full Text] [Related]
43. Fourier transform infrared analysis of the interaction of azide with the active site of oxidized and reduced bovine Cu,Zn superoxide dismutase. Leone M; Cupane A; Militello V; Stroppolo ME; Desideri A Biochemistry; 1998 Mar; 37(13):4459-64. PubMed ID: 9521765 [TBL] [Abstract][Full Text] [Related]
44. Evidence for breaking of the active site dimetal cluster in Cu,Co superoxide dismutase upon copper reduction: a polarized absorption spectra study. Merli A; Rossi G; Djinovic-Carugo K; Bolognesi M; Desideri A; Rotilio G Biochem Biophys Res Commun; 1995 May; 210(3):1040-4. PubMed ID: 7763231 [TBL] [Abstract][Full Text] [Related]
45. 1H NMR spectroscopy of the binuclear Cu(II) active site of Streptomyces antibioticus tyrosinase. Bubacco L; Salgado J; Tepper AW; Vijgenboom E; Canters GW FEBS Lett; 1999 Jan; 442(2-3):215-20. PubMed ID: 9929004 [TBL] [Abstract][Full Text] [Related]
46. Active-site modification of superoxide dismutase by H2O2 studied through 1H NMR of the cobalt derivatives. Bertini I; Luchinat C; Viezzoli MS; Wang Y Arch Biochem Biophys; 1989 Mar; 269(2):586-94. PubMed ID: 2919884 [TBL] [Abstract][Full Text] [Related]
47. 1H nuclear magnetic relaxation dispersion of Cu,Zn superoxide dismutase in the native and guanidinium-induced unfolded forms. Libralesso E; Nerinovski K; Parigi G; Turano P Biochem Biophys Res Commun; 2005 Mar; 328(2):633-9. PubMed ID: 15694395 [TBL] [Abstract][Full Text] [Related]
48. NMR spectroscopy of exchangeable protons of glucoamylase and of complexes with inhibitors in the 9-15-ppm range. Firsov LM; Neustroev KN; Aleshin AE; Metzler CM; Metzler DE; Scott RD; Stoffer B; Christensen T; Svensson B Eur J Biochem; 1994 Jul; 223(1):293-302. PubMed ID: 8033904 [TBL] [Abstract][Full Text] [Related]
49. A proton-nuclear-magnetic-resonance study at 500 MHz on Megasphaera elsdenii flavodoxin. A study on the stability, proton exchange and the assignment of some resonance lines. Moonen CT; Müller F Eur J Biochem; 1984 Apr; 140(2):311-8. PubMed ID: 6325184 [TBL] [Abstract][Full Text] [Related]
50. X-ray absorption investigation of a unique protein domain able to bind both copper(I) and copper(II) at adjacent sites of the N-terminus of Haemophilus ducreyi Cu,Zn superoxide dismutase. D'Angelo P; Pacello F; Mancini G; Proux O; Hazemann JL; Desideri A; Battistoni A Biochemistry; 2005 Oct; 44(39):13144-50. PubMed ID: 16185082 [TBL] [Abstract][Full Text] [Related]
51. 13C direct detection experiments on the paramagnetic oxidized monomeric copper, zinc superoxide dismutase. Bermel W; Bertini I; Felli IC; Kümmerle R; Pierattelli R J Am Chem Soc; 2003 Dec; 125(52):16423-9. PubMed ID: 14692785 [TBL] [Abstract][Full Text] [Related]
52. Nuclear magnetic resonance study of the exchangeable histidine protons in bovine and wheat germ superoxide dismutases. Burger AR; Lippard SJ; Pantoliano MW; Valentine JS Biochemistry; 1980 Sep; 19(18):4139-43. PubMed ID: 7417399 [TBL] [Abstract][Full Text] [Related]
53. Cyanide and azide behave in a similar fashion versus cuprozinc-superoxide dismutase. Banci L; Bertini I; Luchinat C; Scozzafava A J Biol Chem; 1989 Jun; 264(17):9742-4. PubMed ID: 2722873 [TBL] [Abstract][Full Text] [Related]
54. Two-dimensional NMR studies of staphylococcal nuclease: evidence for conformational heterogeneity from hydrogen-1, carbon-13, and nitrogen-15 spin system assignments of the aromatic amino acids in the nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+ ternary complex. Wang JF; Hinck AP; Loh SN; Markley JL Biochemistry; 1990 May; 29(17):4242-53. PubMed ID: 2361141 [TBL] [Abstract][Full Text] [Related]
55. Nitrated and oxidized products of a single tryptophan residue in human Cu,Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite. Yamakura F; Matsumoto T; Ikeda K; Taka H; Fujimura T; Murayama K; Watanabe E; Tamaki M; Imai T; Takamori K J Biochem; 2005 Jul; 138(1):57-69. PubMed ID: 16046449 [TBL] [Abstract][Full Text] [Related]
56. Spectroscopic and computational studies of the azide-adduct of manganese superoxide dismutase: definitive assignment of the ligand responsible for the low-temperature thermochromism. Jackson TA; Karapetian A; Miller AF; Brunold TC J Am Chem Soc; 2004 Oct; 126(39):12477-91. PubMed ID: 15453782 [TBL] [Abstract][Full Text] [Related]
57. Co(II) derivatives of Cu,Zn-superoxide dismutase with the cobalt bound in the place of copper. A new spectroscopic tool for the study of the active site. Desideri A; Cocco D; Calabrese L; Rotilio G Biochim Biophys Acta; 1984 Mar; 785(3):111-7. PubMed ID: 6322852 [TBL] [Abstract][Full Text] [Related]
58. Imidazolate-bridged dicopper(II) and copper(II)-zinc(II) complexes of macrocyclic ligand with methylimidazol pendants: Model study of copper(II)-zinc(II) superoxide dismutase. Yuan Q; Cai K; Qi ZP; Bai ZS; Su Z; Sun WY J Inorg Biochem; 2009 Aug; 103(8):1156-61. PubMed ID: 19608280 [TBL] [Abstract][Full Text] [Related]
60. Assignment of the imidazole ring nitrogen protons of histidine 48 in the proton NMR spectrum of ribonuclease A in water solution. Patel DJ; Canuel LL; Bovey FA; Woodward C Biochim Biophys Acta; 1975 Aug; 400(2):275-82. PubMed ID: 240416 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]