BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18514942)

  • 1. Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling.
    Ryu K; Kang JH; Wang L; Lee EK
    J Biotechnol; 2008 Jun; 135(3):241-6. PubMed ID: 18514942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability.
    Ryu K; Hwang SY; Kim KH; Kang JH; Lee EK
    J Biotechnol; 2008 Jan; 133(1):110-5. PubMed ID: 17961781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of 2,4-dichlorophenol in a fluidized bed reactor with immobilized Phanerochaete chrysosporium.
    Li XM; Yang Q; Zhang Y; Zheng W; Yue X; Wang DB; Zeng GM
    Water Sci Technol; 2010; 62(4):947-55. PubMed ID: 20729600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of chlorophenols by Phanerochaete chrysosporium: effect of 3,4-dichlorophenol on extracellular peroxidase activities.
    Duran R; Deschler C; Precigou S; Goulas P
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):284-8. PubMed ID: 12111159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,4-Dichlorophenol degradation using Streptomyces viridosporus T7A lignin peroxidase.
    Yee DC; Wood TK
    Biotechnol Prog; 1997; 13(1):53-9. PubMed ID: 9041710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering of a manganese-binding site in lignin peroxidase isozyme H8 from Phanerochaete chrysosporium.
    Mester T; Tien M
    Biochem Biophys Res Commun; 2001 Jun; 284(3):723-8. PubMed ID: 11396962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium.
    Chen A; Zeng G; Chen G; Fan J; Zou Z; Li H; Hu X; Long F
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):811-21. PubMed ID: 21556917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway.
    Montiel-González AM; Fernández FJ; Keer N; Tomasini A
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):335-40. PubMed ID: 19340422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative stability of recombinant versus native peroxidases from Phanerochaete chrysosporium.
    Nie G; Reading NS; Aust SD
    Arch Biochem Biophys; 1999 May; 365(2):328-34. PubMed ID: 10328828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral amino acid substitution improves the thermal stability of recombinant lignin-peroxidase from white-rot fungi, Phanerochaete chrysosporium strain UAMH 3641.
    Semba Y; Ishida M; Yokobori S; Yamagishi A
    Protein Eng Des Sel; 2015 Jul; 28(7):221-30. PubMed ID: 25858964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of athermostable manganese peroxidase from Dichomitus squalens in Phanerochaete chrysosporium.
    Li D; Youngs HL; Gold MH
    Arch Biochem Biophys; 2001 Jan; 385(2):348-56. PubMed ID: 11368016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes.
    Singh D; Chen S
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):399-417. PubMed ID: 18810426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624.
    Hirai H; Sugiura M; Kawai S; Nishida T
    FEMS Microbiol Lett; 2005 May; 246(1):19-24. PubMed ID: 15869957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic properties of cytochrome P450 catalyzing 3'-hydroxylation of naringenin from the white-rot fungus Phanerochaete chrysosporium.
    Kasai N; Ikushiro S; Hirosue S; Arisawa A; Ichinose H; Wariishi H; Ohta M; Sakaki T
    Biochem Biophys Res Commun; 2009 Sep; 387(1):103-8. PubMed ID: 19576179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium--a white rot fungus.
    Wen X; Jia Y; Li J
    Chemosphere; 2009 May; 75(8):1003-7. PubMed ID: 19232429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin-model compounds.
    Ferapontova EE; Castillo J; Gorton L
    Biochim Biophys Acta; 2006 Sep; 1760(9):1343-54. PubMed ID: 16781814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and ligninolytic system production dynamics of the Phanerochaete chrysosporium fungus A modelling and optimization approach.
    Hormiga JA; Vera J; Frías I; Torres Darias NV
    J Biotechnol; 2008 Oct; 137(1-4):50-8. PubMed ID: 18694789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Directed evolution of D-lactonohydrolase by error prone PCR and DNA shuffling].
    Liu ZQ; Sun ZH; Zheng P; Leng Y; Qian JN
    Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):773-81. PubMed ID: 16285520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MnII is not a productive substrate for wild-type or recombinant lignin peroxidase isozyme H2.
    Sollewijn Gelpke MD; Sheng D; Gold MH
    Arch Biochem Biophys; 2000 Sep; 381(1):16-24. PubMed ID: 11019815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media.
    Patel DS; Aithal RK; Krishna G; Lvov YM; Tien M; Kuila D
    Colloids Surf B Biointerfaces; 2005 Jun; 43(1):13-9. PubMed ID: 15916887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.