BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 18515057)

  • 1. The rotary mechanism of the ATP synthase.
    Nakamoto RK; Baylis Scanlon JA; Al-Shawi MK
    Arch Biochem Biophys; 2008 Aug; 476(1):43-50. PubMed ID: 18515057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular architecture of the rotary motor in ATP synthase.
    Stock D; Leslie AG; Walker JE
    Science; 1999 Nov; 286(5445):1700-5. PubMed ID: 10576729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase.
    Lau WC; Rubinstein JL
    Nature; 2011 Dec; 481(7380):214-8. PubMed ID: 22178924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation.
    Sambongi Y; Iko Y; Tanabe M; Omote H; Iwamoto-Kihara A; Ueda I; Yanagida T; Wada Y; Futai M
    Science; 1999 Nov; 286(5445):1722-4. PubMed ID: 10576736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural changes linked to proton translocation by subunit c of the ATP synthase.
    Rastogi VK; Girvin ME
    Nature; 1999 Nov; 402(6759):263-8. PubMed ID: 10580496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP synthase: what dictates the size of a ring?
    Ferguson SJ
    Curr Biol; 2000 Nov; 10(21):R804-8. PubMed ID: 11084356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP synthase: an electrochemical transducer with rotatory mechanics.
    Junge W; Lill H; Engelbrecht S
    Trends Biochem Sci; 1997 Nov; 22(11):420-3. PubMed ID: 9397682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Torque generation and utilization in motor enzyme F0F1-ATP synthase: half-torque F1 with short-sized pushrod helix and reduced ATP Synthesis by half-torque F0F1.
    Usukura E; Suzuki T; Furuike S; Soga N; Saita E; Hisabori T; Kinosita K; Yoshida M
    J Biol Chem; 2012 Jan; 287(3):1884-91. PubMed ID: 22128167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP synthesis driven by proton transport in F1F0-ATP synthase.
    Weber J; Senior AE
    FEBS Lett; 2003 Jun; 545(1):61-70. PubMed ID: 12788493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase.
    Shah NB; Duncan TM
    J Biol Chem; 2015 Aug; 290(34):21032-21041. PubMed ID: 26160173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site.
    Kuo PH; Nakamoto RK
    Biochem J; 2000 May; 347 Pt 3(Pt 3):797-805. PubMed ID: 10769185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences.
    Zubareva VM; Lapashina AS; Shugaeva TE; Litvin AV; Feniouk BA
    Biochemistry (Mosc); 2020 Dec; 85(12):1613-1630. PubMed ID: 33705299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton translocation driven by ATP hydrolysis in V-ATPases.
    Kawasaki-Nishi S; Nishi T; Forgac M
    FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ.
    Fillingame RH; Dmitriev OY
    Biochim Biophys Acta; 2002 Oct; 1565(2):232-45. PubMed ID: 12409198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. F0F1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of epsilon subunit in response to proton motive force and ADP/ATP balance.
    Suzuki T; Murakami T; Iino R; Suzuki J; Ono S; Shirakihara Y; Yoshida M
    J Biol Chem; 2003 Nov; 278(47):46840-6. PubMed ID: 12881515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reciprocating motion-driven rotation mechanism for the ATP synthase.
    Liu J; Fu X; Chang Z
    Sci China Life Sci; 2016 Jan; 59(1):44-8. PubMed ID: 26718355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of rigid body mechanics to theoretical description of rotation within F0F1-ATP synthase.
    Nartsissov YR; Mashkovtseva EV
    J Theor Biol; 2006 Sep; 242(2):300-8. PubMed ID: 16603197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotational coupling in the F0F1 ATP synthase.
    Nakamoto RK; Ketchum CJ; al-Shawi MK
    Annu Rev Biophys Biomol Struct; 1999; 28():205-34. PubMed ID: 10410801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.