BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18515064)

  • 1. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments.
    Varco-Merth B; Fromme R; Wang M; Fromme P
    Biochim Biophys Acta; 2008; 1777(7-8):605-12. PubMed ID: 18515064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution structure and mechanism of an F/V-hybrid rotor ring in a Na⁺-coupled ATP synthase.
    Matthies D; Zhou W; Klyszejko AL; Anselmi C; Yildiz Ö; Brandt K; Müller V; Faraldo-Gómez JD; Meier T
    Nat Commun; 2014 Nov; 5():5286. PubMed ID: 25381992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of ATP tightly bound to catalytic sites of chloroplast ATP synthase.
    Smith LT; Rosen G; Boyer PD
    J Biol Chem; 1983 Sep; 258(18):10887-94. PubMed ID: 6309820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-dependent changes in the conformation of the chloroplast ATP synthase and its catalytic activity.
    Komatsu-Takaki M
    Eur J Biochem; 1993 Jun; 214(2):587-91. PubMed ID: 8390356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase.
    Balakrishna AM; Seelert H; Marx SH; Dencher NA; Grüber G
    Biosci Rep; 2014 Apr; 34(2):. PubMed ID: 27919036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of rotor subunits in the chloroplast ATP synthase modulated by nucleotides and by Mg2+.
    Gertz M; Seelert H; Dencher NA; Poetsch A
    Biochim Biophys Acta; 2007 May; 1774(5):566-74. PubMed ID: 17442644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast.
    Petersen J; Förster K; Turina P; Gräber P
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11150-5. PubMed ID: 22733773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering rotor ring stoichiometries in the ATP synthase.
    Pogoryelov D; Klyszejko AL; Krasnoselska GO; Heller EM; Leone V; Langer JD; Vonck J; Müller DJ; Faraldo-Gómez JD; Meier T
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):E1599-608. PubMed ID: 22628564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The epsilon subunit of bacterial and chloroplast F(1)F(0) ATPases. Structure, arrangement, and role of the epsilon subunit in energy coupling within the complex.
    Capaldi RA; Schulenberg B
    Biochim Biophys Acta; 2000 May; 1458(2-3):263-9. PubMed ID: 10838042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Happy motoring with ATP synthase.
    Senior AE; Weber J
    Nat Struct Mol Biol; 2004 Feb; 11(2):110-2. PubMed ID: 14749768
    [No Abstract]   [Full Text] [Related]  

  • 11. Residue 249 in subunit beta regulates ADP inhibition and its phosphate modulation in Escherichia coli ATP synthase.
    Lapashina AS; Prikhodko AS; Shugaeva TE; Feniouk BA
    Biochim Biophys Acta Bioenerg; 2019 Mar; 1860(3):181-188. PubMed ID: 30528692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A subunit interaction in chloroplast ATP synthase determined by genetic complementation between chloroplast and bacterial ATP synthase genes.
    Chen Z; Spies A; Hein R; Zhou X; Thomas BC; Richter ML; Gegenheimer P
    J Biol Chem; 1995 Jul; 270(29):17124-32. PubMed ID: 7615507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    J Membr Biol; 2015 Apr; 248(2):163-9. PubMed ID: 25655107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ.
    Fillingame RH; Dmitriev OY
    Biochim Biophys Acta; 2002 Oct; 1565(2):232-45. PubMed ID: 12409198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that energization of the chloroplast ATP synthase favors ATP formation at the tight binding catalytic site and increases the affinity for ADP at another catalytic site.
    Zhou JM; Boyer PD
    J Biol Chem; 1993 Jan; 268(3):1531-8. PubMed ID: 8420929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts.
    Yamamoto H; Cheuk A; Shearman J; Nixon PJ; Meier T; Shikanai T
    Plant Physiol; 2023 May; 192(2):1221-1233. PubMed ID: 36703219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic fusions of globular proteins to the epsilon subunit of the Escherichia coli ATP synthase: Implications for in vivo rotational catalysis and epsilon subunit function.
    Cipriano DJ; Bi Y; Dunn SD
    J Biol Chem; 2002 May; 277(19):16782-90. PubMed ID: 11875079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ATP synthase gamma subunit provides the primary site of activation of the chloroplast enzyme: experiments with a chloroplast-like Synechocystis 6803 mutant.
    Krenn BE; Strotmann H; Van Walraven HS; Scholts MJ; Kraayenhof R
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):841-5. PubMed ID: 9169620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Important subunit interactions in the chloroplast ATP synthase.
    Richter ML; Hein R; Huchzermeyer B
    Biochim Biophys Acta; 2000 May; 1458(2-3):326-42. PubMed ID: 10838048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.