These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18515376)

  • 1. Cylindrical illumination confocal spectroscopy: rectifying the limitations of confocal single molecule spectroscopy through one-dimensional beam shaping.
    Liu KJ; Wang TH
    Biophys J; 2008 Sep; 95(6):2964-75. PubMed ID: 18515376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study.
    Park T; Lee S; Seong GH; Choo J; Lee EK; Kim YS; Ji WH; Hwang SY; Gweon DG; Lee S
    Lab Chip; 2005 Apr; 5(4):437-42. PubMed ID: 15791342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-flow single-molecule CE with high detection efficiency.
    Schiro PG; Kuyper CL; Chiu DT
    Electrophoresis; 2007 Jul; 28(14):2430-8. PubMed ID: 17577880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counting single molecules in sub-nanolitre droplets.
    Rane TD; Puleo CM; Liu KJ; Zhang Y; Lee AP; Wang TH
    Lab Chip; 2010 Jan; 10(2):161-4. PubMed ID: 20066242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCR-free, microfluidic single molecule analysis of circulating nucleic acids in lung cancer patient serum.
    Liu KJ; Wang TH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8392-5. PubMed ID: 22256294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices.
    Wabuyele MB; Ford SM; Stryjewski W; Barrow J; Soper SA
    Electrophoresis; 2001 Oct; 22(18):3939-48. PubMed ID: 11700724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding circulating nucleic acids in human serum using microfluidic single molecule spectroscopy.
    Liu KJ; Brock MV; Shih IeM; Wang TH
    J Am Chem Soc; 2010 Apr; 132(16):5793-8. PubMed ID: 20364832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-angle optical deflection from collinear configuration for sensitive detection in microfluidic systems.
    Yang L; Li X; Li J; Yuan H; Zhao S; Xiao D
    Electrophoresis; 2012 Jul; 33(13):1996-2004. PubMed ID: 22806465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of low concentrations of DNA using single molecule detection and velocity measurement in a microchannel.
    Chao SY; Ho YP; Bailey VJ; Wang TH
    J Fluoresc; 2007 Nov; 17(6):767-74. PubMed ID: 17653837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids.
    Wang TH; Peng Y; Zhang C; Wong PK; Ho CM
    J Am Chem Soc; 2005 Apr; 127(15):5354-9. PubMed ID: 15826173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitive and high-throughput fluorescence analysis of droplet contents with orthogonal line confocal excitation.
    Jeffries GD; Lorenz RM; Chiu DT
    Anal Chem; 2010 Dec; 82(23):9948-54. PubMed ID: 21062029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated microspectrometer for fluorescence based analysis in a microfluidic format.
    Hu Z; Glidle A; Ironside CN; Sorel M; Strain MJ; Cooper J; Yin H
    Lab Chip; 2012 Aug; 12(16):2850-7. PubMed ID: 22648688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated fluorescence detection of labeled biomolecules using a prism-like PDMS microfluidic chip and lateral light excitation.
    Novo P; Chu V; Conde JP
    Lab Chip; 2014 Jun; 14(12):1991-5. PubMed ID: 24806101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy.
    Hess ST; Webb WW
    Biophys J; 2002 Oct; 83(4):2300-17. PubMed ID: 12324447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focal volume confinement by submicrometer-sized fluidic channels.
    Foquet M; Korlach J; Zipfel WR; Webb WW; Craighead HG
    Anal Chem; 2004 Mar; 76(6):1618-26. PubMed ID: 15018559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy.
    Lee D; Lee S; Seong GH; Choo J; Lee EK; Gweon DG; Lee S
    Appl Spectrosc; 2006 Apr; 60(4):373-7. PubMed ID: 16613632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling confocal fluorescence detection and recirculating microfluidic control for single particle analysis in discrete nanoliter volumes.
    Puleo CM; Yeh HC; Liu KJ; Wang TH
    Lab Chip; 2008 May; 8(5):822-5. PubMed ID: 18432356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards single molecule analysis in PDMS microdevices: from the detection of ultra low dye concentrations to single DNA molecule studies.
    Ros A; Hellmich W; Duong T; Anselmetti D
    J Biotechnol; 2004 Aug; 112(1-2):65-72. PubMed ID: 15288941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.