BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18515399)

  • 1. Distinguishing thermodynamic and kinetic views of the preferential hydration of protein surfaces.
    Priya MH; Shah JK; Asthagiri D; Paulaitis ME
    Biophys J; 2008 Sep; 95(5):2219-25. PubMed ID: 18515399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-scattering studies of protein solutions: role of hydration in weak protein-protein interactions.
    Paliwal A; Asthagiri D; Abras D; Lenhoff AM; Paulaitis ME
    Biophys J; 2005 Sep; 89(3):1564-73. PubMed ID: 15980182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of hydration in hen egg white lysozyme.
    Sterpone F; Ceccarelli M; Marchi M
    J Mol Biol; 2001 Aug; 311(2):409-19. PubMed ID: 11478869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of water penetration in staphylococcal nuclease.
    Damjanović A; García-Moreno B; Lattman EE; García AE
    Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the dynamic transition upon pressurization of crystalline proteins.
    Oleinikova A; Smolin N; Brovchenko I
    J Phys Chem B; 2006 Oct; 110(39):19619-24. PubMed ID: 17004829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic regions on protein surfaces: definition based on hydration shell structure and a quick method for their computation.
    Eisenhaber F; Argos P
    Protein Eng; 1996 Dec; 9(12):1121-33. PubMed ID: 9010925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of water clustering on the dynamics of hydration water at the surface of a lysozyme.
    Oleinikova A; Smolin N; Brovchenko I
    Biophys J; 2007 Nov; 93(9):2986-3000. PubMed ID: 17631539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residence times of water molecules in the hydration sites of myoglobin.
    Makarov VA; Andrews BK; Smith PE; Pettitt BM
    Biophys J; 2000 Dec; 79(6):2966-74. PubMed ID: 11106604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents.
    King JT; Arthur EJ; Brooks CL; Kubarych KJ
    J Phys Chem B; 2012 May; 116(19):5604-11. PubMed ID: 22530969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water rotational relaxation and diffusion in hydrated lysozyme.
    Marchi M; Sterpone F; Ceccarelli M
    J Am Chem Soc; 2002 Jun; 124(23):6787-91. PubMed ID: 12047201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.
    Beuming T; Che Y; Abel R; Kim B; Shanmugasundaram V; Sherman W
    Proteins; 2012 Mar; 80(3):871-83. PubMed ID: 22223256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration-dependent protein dynamics revealed by molecular dynamics simulation of crystalline staphylococcal nuclease.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    J Phys Chem B; 2008 Mar; 112(11):3522-8. PubMed ID: 18293961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration structure of human lysozyme investigated by molecular dynamics simulation and cryogenic X-ray crystal structure analyses: on the correlation between crystal water sites, solvent density, and solvent dipole.
    Higo J; Nakasako M
    J Comput Chem; 2002 Nov; 23(14):1323-36. PubMed ID: 12214315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of flexibility and polarity as determinants of the hydration of internal cavities and pockets in proteins.
    Damjanović A; Schlessman JL; Fitch CA; García AE; García-Moreno E B
    Biophys J; 2007 Oct; 93(8):2791-804. PubMed ID: 17604315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data.
    Chalikian TV; Totrov M; Abagyan R; Breslauer KJ
    J Mol Biol; 1996 Jul; 260(4):588-603. PubMed ID: 8759322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of proteins under high pressure: Structure, function and thermodynamics.
    Hata H; Nishiyama M; Kitao A
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129395. PubMed ID: 31302180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular anatomy of preferential interaction coefficients by elucidating protein solvation in mixed solvents: methodology and application for lysozyme in aqueous glycerol.
    Vagenende V; Yap MG; Trout BL
    J Phys Chem B; 2009 Aug; 113(34):11743-53. PubMed ID: 19653677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein surface hydration mapped by site-specific mutations.
    Qiu W; Kao YT; Zhang L; Yang Y; Wang L; Stites WE; Zhong D; Zewail AH
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):13979-84. PubMed ID: 16968773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.