BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1203 related articles for article (PubMed ID: 18515566)

  • 1. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence.
    Chang CY; Green CR; McGhee CN; Sherwin T
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5279-86. PubMed ID: 18515566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epithelial regeneration after limbus-to-limbus debridement. Expression of alpha-enolase in stem and transient amplifying cells.
    Chung EH; DeGregorio PG; Wasson M; Zieske JD
    Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1336-43. PubMed ID: 7775111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of putative stem cell phenotype in human limbal epithelia.
    Chen Z; de Paiva CS; Luo L; Kretzer FL; Pflugfelder SC; Li DQ
    Stem Cells; 2004; 22(3):355-66. PubMed ID: 15153612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of limbal stem cells.
    Schlötzer-Schrehardt U; Kruse FE
    Exp Eye Res; 2005 Sep; 81(3):247-64. PubMed ID: 16051216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane.
    Du Y; Chen J; Funderburgh JL; Zhu X; Li L
    Mol Vis; 2003 Dec; 9():635-43. PubMed ID: 14685149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium.
    Chang CY; McGhee JJ; Green CR; Sherwin T
    Cornea; 2011 Oct; 30(10):1155-62. PubMed ID: 21849892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphere-forming cells from peripheral cornea demonstrate the ability to repopulate the ocular surface.
    Mathan JJ; Ismail S; McGhee JJ; McGhee CN; Sherwin T
    Stem Cell Res Ther; 2016 Jun; 7(1):81. PubMed ID: 27250558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epithelial Cell Migration and Proliferation Patterns During Initial Wound Closure in Normal Mice and an Experimental Model of Limbal Stem Cell Deficiency.
    Puri S; Sun M; Mutoji KN; Gesteira TF; Coulson-Thomas VJ
    Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):27. PubMed ID: 32790859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells.
    Saghizadeh M; Dib CM; Brunken WJ; Ljubimov AV
    Exp Eye Res; 2014 Dec; 129():66-73. PubMed ID: 25446319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.
    Morita M; Fujita N; Takahashi A; Nam ER; Yui S; Chung CS; Kawahara N; Lin HY; Tsuzuki K; Nakagawa T; Nishimura R
    Vet Ophthalmol; 2015 Jan; 18(1):59-68. PubMed ID: 24471763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A putative role for RHAMM/HMMR as a negative marker of stem cell-containing population of human limbal epithelial cells.
    Ahmad S; Kolli S; Li DQ; de Paiva CS; Pryzborski S; Dimmick I; Armstrong L; Figueiredo FC; Lako M
    Stem Cells; 2008 Jun; 26(6):1609-19. PubMed ID: 18356573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell cycle protein expression and proliferative status in human corneal cells.
    Joyce NC; Meklir B; Joyce SJ; Zieske JD
    Invest Ophthalmol Vis Sci; 1996 Mar; 37(4):645-55. PubMed ID: 8595965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane.
    Grueterich M; Espana E; Tseng SC
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):63-71. PubMed ID: 11773014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate of corneal epithelial cells separated from limbus in vivo.
    Kawakita T; Higa K; Shimmura S; Tomita M; Tsubota K; Shimazaki J
    Invest Ophthalmol Vis Sci; 2011 Oct; 52(11):8132-7. PubMed ID: 21896841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Existence of small slow-cycling Langerhans cells in the limbal basal epithelium that express ABCG2.
    Chen W; Hara K; Tian Q; Zhao K; Yoshitomi T
    Exp Eye Res; 2007 Apr; 84(4):626-34. PubMed ID: 17254566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epithelial marker expression in Salzmann nodular degeneration shows characteristics of limbal transient amplifying cells and alludes to an involvement of the epithelium in its pathogenesis.
    Eberwein P; Hiss S; Auw-Haedrich C; Sundmacher R; Hauer K; Boehringer D; Meier P; Reinhard T
    Acta Ophthalmol; 2010 Aug; 88(5):e184-9. PubMed ID: 20583999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration.
    Di Iorio E; Barbaro V; Ruzza A; Ponzin D; Pellegrini G; De Luca M
    Proc Natl Acad Sci U S A; 2005 Jul; 102(27):9523-8. PubMed ID: 15983386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progenitor cells.
    Qi H; Li DQ; Shine HD; Chen Z; Yoon KC; Jones DB; Pflugfelder SC
    Exp Eye Res; 2008 Jan; 86(1):34-40. PubMed ID: 17980361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mosaic analysis of stem cell function and wound healing in the mouse corneal epithelium.
    Mort RL; Ramaesh T; Kleinjan DA; Morley SD; West JD
    BMC Dev Biol; 2009 Jan; 9():4. PubMed ID: 19128502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The side population cells in the rabbit limbus sensitively increased in response to the central cornea wounding.
    Park KS; Lim CH; Min BM; Lee JL; Chung HY; Joo CK; Park CW; Son Y
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):892-900. PubMed ID: 16505021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.